Materials & Methods

  • Jaspreet Singh Kochhar
  • Justin J. Y. Tan
  • Yee Chin Kwang
  • Lifeng Kang


This chapter describes the materials and methods used in the entirety of the experiments illustrated in this book. Methods were outlined in sequence of the book chapters which used them. The methods included simple technique to fabricate microneedle patch, encapsulating proteins inside microneedles by photolithography, fabricating microneedle skin patch for fast onset, long-lasting delivery of painkillers and delivering collagen through the skin using microneedle patch.


Materials Methods Fabrication Photolithography Penetration 


  1. 1.
    Kazmierska KA et al (2009) Bioactive coatings for minimally invasive medical devices: surface modification in the service of medicine. Recent Patents Biomed Eng 2:1–14CrossRefGoogle Scholar
  2. 2.
    Ahn D et al (2009) Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks. Opt Express 17:16603–16612CrossRefGoogle Scholar
  3. 3.
    Varshney M et al (1999) Effects of AOT micellar systems on the transdermal permeation of glyceryl trinitrate. Colloids Surf B-Biointerfaces 13:1–11CrossRefGoogle Scholar
  4. 4.
    Park JH et al (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104:51–66CrossRefGoogle Scholar
  5. 5.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  6. 6.
    Murayama K et al (2004) Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry 43:11526–11532CrossRefGoogle Scholar
  7. 7.
    Estey T et al (2006) BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J Pharm Sci 95:1626–1639CrossRefGoogle Scholar
  8. 8.
    Andrade MA et al (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6:383–390CrossRefGoogle Scholar
  9. 9.
    Whitmore L et al (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673CrossRefGoogle Scholar
  10. 10.
    Whitmore L et al (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400CrossRefGoogle Scholar
  11. 11.
    Xie Y et al (2005) Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 1:184–190CrossRefGoogle Scholar
  12. 12.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  13. 13.
    Berckmans P et al (2007) Screening of endocrine disrupting chemicals with MELN cells, an ER-transactivation assay combined with cytotoxicity assessment. Toxicol in Vitro 21:1262–1267CrossRefGoogle Scholar
  14. 14.
    Kochhar JS et al (2013) A simple method of microneedle array fabrication for transdermal drug delivery. Drug Dev Ind Pharm 39:299–309CrossRefGoogle Scholar
  15. 15.
    Davis SP et al (2004) Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech 37:1155–1163CrossRefGoogle Scholar
  16. 16.
    Chaudhri BP et al (2011) Out-of-plane, high strength, polymer microneedles for transdermal drug delivery. Conf Proc IEEE Eng Med Biol Soc 2011:3680–3683PubMedGoogle Scholar
  17. 17.
    Huang L et al (2012) Paradoxical potentiation of methylene blue-mediated antimicrobial photodynamic inactivation by sodium azide: role of ambient oxygen and azide radicals. Free Radic Biol Med 53:2062–2071CrossRefGoogle Scholar
  18. 18.
    Liawruangrath S et al (2001) Simultaneous determination of tolperisone and lidocaine by high performance liquid chromatography. J Pharm Biomed Anal 26:865–872CrossRefGoogle Scholar
  19. 19.
    Tay FEH et al (2006) Defect-free wet etching through pyrex glass using Cr/Au mask. Microsyst Technol 12:935–939CrossRefGoogle Scholar
  20. 20.
    Iliescu C et al (2008) On the wet etching of Pyrex glass. Sens Actuators A Phys 143:154–161CrossRefGoogle Scholar
  21. 21.
    Iliescu C et al (2005) Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution. Surf Coat Technol 198:314–318CrossRefGoogle Scholar
  22. 22.
    Peebles L et al (2003) Filling ‘gaps’ in strength data for design. Appl Ergon 34:73–88CrossRefGoogle Scholar
  23. 23.
    Sugiyama K et al (1980) A simple and rapid assay for collagenase activity using fluorescence-labeled substrate. Kurume Med J 27:63–69CrossRefGoogle Scholar
  24. 24.
    Zhou CP et al (2010) Transdermal delivery of insulin using microneedle rollers in vivo. Int J Pharm 392:127–133CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jaspreet Singh Kochhar
    • 1
  • Justin J. Y. Tan
    • 2
  • Yee Chin Kwang
    • 3
  • Lifeng Kang
    • 3
  1. 1.Procter & GambleSingaporeSingapore
  2. 2.Department of PharmacyNational University of SingaporeSingaporeSingapore
  3. 3.School of PharmacyUniversity of SydneySydneyAustralia

Personalised recommendations