Advertisement

Energy Efficient Network Selection for Cognitive Spectrum Handovers

  • Anandakumar Haldorai
  • Umamaheswari Kandaswamy
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

The investigation in this chapter presents various techniques and methods of progress in the area of cognitive network cooperative spectrum handovers. CR handovers are represented as a unique field of research in both the wireless and networking communities. The CR handovers have given significant implications over the design aspect of networks, specifically the support for adaptable cross-layer algorithms in physical link quality, radio interference, radio node density, and network topology are expected to have advanced management and control that supports cross-layer information and internode collaboration. The methods for energy efficiency network selection in CR handovers are focused. An overview of energy efficient network selection and system model is described using cooperative active and inactive methods along with IEEE 802.16g network selection model. This chapter also discusses various direct and cooperative transmission factors and all performances of each method are simulated.

Keywords

Energy efficiency Spectrum handovers Wireless communications Primary users Secondary users Cooperative active/inactive mode Radio on time optimization 

References

  1. 1.
    Anandakumar, H., Umamaheswari, K.: An efficient optimized handover in cognitive radio networks using cooperative spectrum sensing. Intell. Autom. Soft Comput. 1–8 (2017)Google Scholar
  2. 2.
    Anandakumar, H., Arulmurugan, R., Onn, C.C.: Computational intelligence and sustainable systems. In: EAI/Springer Innovations in Communication and Computing (2019)Google Scholar
  3. 3.
    Celebi, H., Arslan, H.: Utilization of location information in cognitive wireless networks. IEEE Wirel. Commun. 14(4), 6–13 (2007)CrossRefGoogle Scholar
  4. 4.
    Beibei, W., Liu, K.J.R.: Advances in cognitive radio networks: a survey. IEEE J. Select. Top. Signal Process. 5, 5–23 (2011)CrossRefGoogle Scholar
  5. 5.
    Suganya, M., Anandakumar, H.: Handover based spectrum allocation in cognitive radio networks. In: 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Chennai, pp. 215–219 (2013)Google Scholar
  6. 6.
    Qing, Z., Sadler, B.M.: A survey of dynamic spectrum access. Signal Process. Mag. IEEE. 24, 79–89 (2007)CrossRefGoogle Scholar
  7. 7.
    Lu, L., Zhou, X., Onunkwo, U., Li, G.Y.: Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP J. Wirel. Commun. Netw. 2012, 28 (2012)CrossRefGoogle Scholar
  8. 8.
    Barra, C., Zotti, R.: Bank performance, financial stability and market concentration: evidence from cooperative and non-cooperative banks. Ann. Publ. Cooper. Econ. (2018).  https://doi.org/10.1111/apce.12217CrossRefGoogle Scholar
  9. 9.
    Tie, X., Hong, P., Xue, K., Tang, H.: A handover mechanism based on cooperative diversity. J. Electr. Inform. Technol. 33(5), 1178–1185 (2011).  https://doi.org/10.3724/sp.j.1146.2010.00818CrossRefGoogle Scholar
  10. 10.
    Huang, C., Zhang, W., Li, K., Huang, B., Dai, B.: Hierarchical network coding based cooperative handover mechanism in wireless internet of things. J. Electr. Inform. Technol. 35(1), 147–150 (2014).  https://doi.org/10.3724/sp.j.1146.2012.00468CrossRefGoogle Scholar
  11. 11.
    Yang, J., Ji, X.: An improved inter-domain handover scheme based on a bidirectional cooperative relay. Cybernet. Inform. Technol. 13(4), 127–138 (2013).  https://doi.org/10.2478/cait-2013-0059CrossRefGoogle Scholar
  12. 12.
    Papadaki, K., Friderikos, V.: Optimal vertical handover control policies for cooperative wireless networks. J. Commun. Netw. 8(4), 442–450 (2006).  https://doi.org/10.1109/jcn.2006.6182792CrossRefzbMATHGoogle Scholar
  13. 13.
    Jones, R., Veendorp, E.: Cooperative moves in a non-cooperative game. Glob. Business Econ. Rev. 7(1), 25 (2005).  https://doi.org/10.1504/gber.2005.006917CrossRefGoogle Scholar
  14. 14.
    Haldorai, A., Ramu, A., Murugan, S.: Social aware cognitive radio networks. Soc. Netw. Anal. Contemp. Business Organ. 188–202 (2018)Google Scholar
  15. 15.
    Anandakumar, H., Umamaheswari, K.: Supervised machine learning techniques in cognitive radio networks during cooperative spectrum handovers. Clust. Comput. 20(2), 1505–1515 (2017)CrossRefGoogle Scholar
  16. 16.
    Cabric, D., Mishra, S.M., Brodersen, R.W.: Implementation issues in spectrum sensing for cognitive radios. Conference Record of the Thirty-Eighth Asilomar Conference on Signals. Syst. Comput. 1, 772–776 (2004)Google Scholar
  17. 17.
    Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009).  https://doi.org/10.1109/SURV.2009.090109CrossRefGoogle Scholar
  18. 18.
    Shen, J., Jiang, T., Liu, S., Zhang, Z.: Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 8(10), 5166–5175 (2009)CrossRefGoogle Scholar
  19. 19.
    Zhao, Z., Peng, Z., Zheng, S., Shang, S.: Cognitive radio spectrum allocation using evolutionary algorithms. IEEE Trans. Wirel. Commun. 8(9), 4421–4425 (2009)CrossRefGoogle Scholar
  20. 20.
    Haldorai, A., Ramu, A.: Cognitive social mining applications in data analytics and forensics. In: Advances in Social Networking and Online Communities (2019)Google Scholar
  21. 21.
    Sadreddini, Z., Güler, E., Çavdar, T.: PSO-optimized instant overbooking framework for cognitive radio networks. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), Prague, pp. 49–53 (2015)Google Scholar
  22. 22.
    Wang, G., Guo, C., Feng, S., Feng, C., Wang, S.: A two-stage cooperative spectrum sensing method for energy efficiency improvement in cognitive radio. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, pp. 876–880 (2013)Google Scholar
  23. 23.
    Xu, H., Zhou, Z.: Cognitive radio decision engine using hybrid binary particle swarm optimization. In: 2013 13th International Symposium on Communications and Information Technologies (ISCIT), Surat Thani, pp. 143–147 (2013)Google Scholar
  24. 24.
    Haldorai, A., Ramu, A., Chow, C.-O.: Editorial: Big Data innovation for sustainable cognitive computing. Mobile Netw. Appl. (2019)Google Scholar
  25. 25.
    Anandakumar, H., Umamaheswari, K.: Energy efficient network selection using 802.16g based gsm technology. J. Comput. Sci. 10(5), 745–754 (2014)CrossRefGoogle Scholar
  26. 26.
    Anandakumar, H., Umamaheswari, K.: Cooperative spectrum handovers in cognitive radio networks. In: EAI/Springer Innovations in Communication and Computing, pp. 47–63 (2018)Google Scholar
  27. 27.
    Anandakumar, H., Umamaheswari, K.: A bio-inspired swarm intelligence technique for social aware cognitive radio handovers. Comput. Electr. Eng. 71, 925–937 (2018)CrossRefGoogle Scholar
  28. 28.
    Xin, Y.: China. In: Dementia 3Ed, pp. 261–264 (2005).  https://doi.org/10.1201/b13239-38CrossRefGoogle Scholar
  29. 29.
    Cavalcanti, D., Schmitt, R., Soomro, A.: Achieving energy efficiency and Qos for low rate applications with 802.11e. In: IEEE Wireless Communications and Networking Conference, Kowloon, pp. 2143–2148 (2007)Google Scholar
  30. 30.
    Ying, C.L., Yonghong, Z., Peh, E.C.Y., Anh, T.H.: Sensing throughput tradeoff for cognitive radio networks. IEEE Trans. Wirel. Commun. 7(4), 1326–1337 (2008)CrossRefGoogle Scholar
  31. 31.
    Chandra, R., Mahajan, R., Moscibroda, T., Raghavendra, R., Bahl, P.: A case for adapting channel width in wireless networks. ACM SIGCOMM Comput. Commun. Rev. 38(4), 135–142 (2008)CrossRefGoogle Scholar
  32. 32.
    Shrivastava, R., Shrivastava, S.K., Shrivastava, A.K.: Study of microwave dielectric charecteristics of soil in North East Chattisgarh. J. Pure Appl. Indus. Phys. 8(12), 214–218 (2018)Google Scholar
  33. 33.
    Monti, S., Soltanian, A., Zadeh, H.: Improved particle swarm optimization and applications to Hidden Markov Model and Ackley function. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings, Ottawa, ON, Canada, pp. 1–4 (2010)Google Scholar
  34. 34.
    Song, C., Zhang, Q.: Intelligent dynamic spectrum access assisted by channel usage prediction. In: INFOCOM IEEE Conference on Computer Communications Workshops, San Diego, CA, pp. 1–6 (2010)Google Scholar
  35. 35.
    Tokel, T., Aktas, D.: A low-complexity transmission and scheduling scheme for WiMAX systems with base station cooperation. EURASIP Journal on Wireless Communications and Networking. 2010(1), 527591 (2010)CrossRefGoogle Scholar
  36. 36.
    Nachef, V., Patarin, J., Volte, E.: Generic attacks on classical feistel ciphers with internal permutations. In: Feistel Ciphers, pp. 75–94 (2017)CrossRefGoogle Scholar
  37. 37.
    Liu, X., Zhang, C., Tan, X.: Double-threshold cooperative detection for cognitive radio based on weighing. Wirel. Commun. Mob. Comput. 14(13), 1231–1243 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anandakumar Haldorai
    • 1
  • Umamaheswari Kandaswamy
    • 2
  1. 1.Department of Computer Science and EngineeringSri Eshwar College of EngineeringCoimbatoreIndia
  2. 2.Department of Information TechnologyPSG College of TechnologyCoimbatoreIndia

Personalised recommendations