Advertisement

Appropriate Renewable Energy Sources for Electricity Generation: A Multi-Attribute Decision-Making Approach

  • Jalil Heidary DahooieEmail author
  • Amir Salar Vanaki
  • Navid Mohammadi
  • Majid Ghanadian
Chapter
  • 232 Downloads
Part of the Innovation, Technology, and Knowledge Management book series (ITKM)

Abstract

The use of different types of renewable energy and replacing the polluting non-renewable and perishable sources show the increasing importance of decision making. In this line, the current study proposes a selection method for the best-established means of electricity generation from renewable energies. A multi-attribute decision making (MADM) model, by applying the methods of CCSD and COPRAS is used. As an applied quantitative research, the significance of this paper is the application of a new hybrid method based on MADM techniques. A number of twenty attributes, being divided into four categories of technological, economic, environmental and social aspects, as well as four sources of renewable energy are analyzed. The alternatives used here include wind power, solar power, biomass, and hydroelectricity. The results reveal that solar power and wind energy are the most appropriate alternatives for electricity generation.

References

  1. 1.
    Tsai, W.-T. (2005). Current status and development policies on renewable energy technology research in Taiwan. Renewable and Sustainable Energy Reviews, 9(3), 237–253.CrossRefGoogle Scholar
  2. 2.
    Dat, L. Q., & Chou, S.-Y. (2014). Selecting renewable energy technology via a fuzzy MCDM approach. Amsterdam: IOS Press.Google Scholar
  3. 3.
    Cormio, C., Dicorato, M., Minoia, A., & Trovato, M. (2003). A regional energy planning methodology including renewable energy sources and environmental constraints. Renewable and Sustainable Energy Reviews, 7(2), 99–130.CrossRefGoogle Scholar
  4. 4.
    Beccali, M., Cellura, M., & Mistretta, M. (2003). Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology. Renewable Energy, 28(13), 2063–2087.CrossRefGoogle Scholar
  5. 5.
    Beccali, M., Cellura, M., & Ardente, D. (1998). Decision making in energy planning: The ELECTRE multicriteria analysis approach compared to a fuzzy-sets methodology. Energy Conversion and Management, 39(16), 1869–1881.CrossRefGoogle Scholar
  6. 6.
    Dicorato, M., Forte, G., & Trovato, M. (2008). Environmental-constrained energy planning using energy-efficiency and distributed-generation facilities. Renewable Energy, 33(6), 1297–1313.CrossRefGoogle Scholar
  7. 7.
    Krukanont, P., & Tezuka, T. (2007). Implications of capacity expansion under uncertainty and value of information: The near-term energy planning of Japan. Energy, 32(10), 1809–1824.CrossRefGoogle Scholar
  8. 8.
    Tsoutsos, T., Drandaki, M., Frantzeskaki, N., Iosifidis, E., & Kiosses, I. (2009). Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy, 37(5), 1587–1600.CrossRefGoogle Scholar
  9. 9.
    Tan, R. R., & Foo, D. C. (2007). Pinch analysis approach to carbon-constrained energy sector planning. Energy, 32(8), 1422–1429.CrossRefGoogle Scholar
  10. 10.
    Zhou, P., Ang, B. W., & Poh, K. L. (2006). Decision analysis in energy and environmental modeling: An update. Energy, 31(14), 2604–2622.CrossRefGoogle Scholar
  11. 11.
    Keeney, R. L., Renn, O., & von Winterfeldt, D. (1987). Structuring West Germany’s energy objectives. Energy Policy, 15(4), 352–362.CrossRefGoogle Scholar
  12. 12.
    Hämäläinen, R. P., & Karjalainen, R. (1992). Decision support for risk analysis in energy policy. European Journal of Operational Research, 56(2), 172–183.CrossRefGoogle Scholar
  13. 13.
    Mirasgedis, S., & Diakoulaki, D. (1997). Multicriteria analysis vs. externalities assessment for the comparative evaluation of electricity generation systems. European Journal of Operational Research, 102(2), 364–379.CrossRefGoogle Scholar
  14. 14.
    Mavrotas, G., Diakoulaki, D., & Papayannakis, L. (1999). An energy planning approach based on mixed 0–1 multiple objective linear programming. International Transactions in Operational Research, 6(2), 231–244.CrossRefGoogle Scholar
  15. 15.
    Afgan, N. H., & Carvalho, M. G. (2002). Multi-criteria assessment of new and renewable energy power plants. Energy, 27(8), 739–755.CrossRefGoogle Scholar
  16. 16.
    Haralambopoulos, D. A., & Polatidis, H. (2003). Renewable energy projects: Structuring a multi-criteria group decision-making framework. Renewable Energy, 28(6), 961–973.CrossRefGoogle Scholar
  17. 17.
    Polatidis, H., & Haralambopoulos, D. (2004). Local renewable energy planning: A participatory multi-criteria approach. Energy Sources, 26(13), 1253–1264.CrossRefGoogle Scholar
  18. 18.
    Topcu, Y. I., & Ulengin, F. (2004). Energy for the future: An integrated decision aid for the case of Turkey. Energy, 29(1), 137–154.CrossRefGoogle Scholar
  19. 19.
    Cavallaro, F., & Ciraolo, L. (2005). A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy, 33(2), 235–244.CrossRefGoogle Scholar
  20. 20.
    Begić, F., & Afgan, N. H. (2007). Sustainability assessment tool for the decision making in selection of energy system—Bosnian case. Energy, 32(10), 1979–1985.CrossRefGoogle Scholar
  21. 21.
    Burton, J., & Hubacek, K. (2007). Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments. Energy Policy, 35(12), 6502–6412.CrossRefGoogle Scholar
  22. 22.
    Afgan, N. H., Pilavachi, P. A., & Carvalho, M. G. (2007). Multi-criteria evaluation of natural gas resources. Energy Policy, 35(1), 704–713.CrossRefGoogle Scholar
  23. 23.
    Önüt, S., Tuzkaya, U. R., & Saadet, N. (2008). Multiple criteria evaluation of current energy resources for Turkish manufacturing industry. Energy Conversion and Management, 49(6), 1480–1492.CrossRefGoogle Scholar
  24. 24.
    Patlitzianas, K. D. (2008). An information decision support system towards the formulation of a modern energy companies’ environment. Renewable and Sustainable Energy Reviews, 12(3), 790–806.CrossRefGoogle Scholar
  25. 25.
    Kahraman, C., Kaya, İ., & Cebi, S. (2009). A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy, 34(10), 1603–1616.CrossRefGoogle Scholar
  26. 26.
    Wang, J.-J. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278.CrossRefGoogle Scholar
  27. 27.
    Kahraman, C., & Kaya, İ. (2010). A fuzzy multicriteria methodology for selection among energy alternatives. Expert Systems with Applications, 37(9), 6270–6281.CrossRefGoogle Scholar
  28. 28.
    Wang, B., Kocaoglu, D. F., Daim, T. U., & Yang, J. (2010). A decision model for energy resource selection in China. Energy Policy, 38(11), 7130–7141.CrossRefGoogle Scholar
  29. 29.
    Barry, M.-L., Steyn, H., & Brent, A. (2011). Selection of renewable energy technologies for Africa: Eight case studies in Rwanda, Tanzania and Malawi. Renewable Energy, 36(11), 2485–2852.CrossRefGoogle Scholar
  30. 30.
    Kaya, T., & Kahraman, C. (2011). Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Systems with Applications, 38(6), 6577–6585.CrossRefGoogle Scholar
  31. 31.
    Doukas, H. (2013). Linguistic multicriteria decision making for energy systems: Building the ‘RE2S’framework. Wiley Interdisciplinary Reviews: Energy and Environment, 2(5), 571–585.CrossRefGoogle Scholar
  32. 32.
    Sadeghi, A., Larimian, T., & Molabashi, A. (2012). Evaluation of renewable energy sources for generating electricity in province of Yazd: A fuzzy MCDM approach. Procedia-Social and Behavioral Sciences, 62, 1095–1099.CrossRefGoogle Scholar
  33. 33.
    Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458–466.CrossRefGoogle Scholar
  34. 34.
    Kabak, M., & Dağdeviren, M. (2014). Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Conversion and Management, 79, 25–33.CrossRefGoogle Scholar
  35. 35.
    Özkan, B., Kaya, İ., Cebeci, U., & Başlıgil, H. (2015). A hybrid multicriteria decision making methodology based on Type-2 fuzzy sets for selection among energy storage alternatives. International Journal of Computational Intelligence Systems, 8(5), 914–927.CrossRefGoogle Scholar
  36. 36.
    Tan, B., Yavuz, Y., Otay, E. N., & Çamlıbel, E. (2016). Optimal selection of energy efficiency measures for energy sustainability of existing buildings. Computers & Operations Research, 66, 258–271.CrossRefGoogle Scholar
  37. 37.
    Ying-Ming, W., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51, 1–2.CrossRefGoogle Scholar
  38. 38.
    Hwang, C., & Yoon, K. (1981). Multiple attribute decision-making: Methods and applications. New York: Springer.CrossRefGoogle Scholar
  39. 39.
    Bitarafan, M., Zolfani, S. H., Arefi, S. L., & Zavadskas, E. K. (2012). Evaluating the construction methods of cold-formed steel structures in reconstructing the areas damaged in natural crises, using the methods AHP and COPRAS-G. Archives of Civil and Mechanical Engineering, 12(3), 360–367.CrossRefGoogle Scholar
  40. 40.
    Zavadskas, E. K., & Kaklauskas, A. (1996). Determination of an efficient contractor by using the new method of multicriteria assessment.In International Symposium for “The Organization and Management of Construction,” Shaping Theory and Practice (Vol. 2).Google Scholar
  41. 41.
    Tupenaite, L., Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Seniut, M. (2010). Multiple criteria assessment of alternatives for built and human environment renovation. Journal of Civil Engineering and Management, 16(2), 257–266.CrossRefGoogle Scholar
  42. 42.
    Chatterjee, P., Athawale, V. M., & Chakraborty, S. (2011). Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design, 32(2), 851–860.CrossRefGoogle Scholar
  43. 43.
    Kaklauskas, A., Zavadskas, E. K., Naimavicienė, J., Krutinis, M., Plakys, V., & Venskus, D. (2010). Model for a complex analysis of intelligent built environment. Automation in Construction, 19(3), 326–340.CrossRefGoogle Scholar
  44. 44.
    Zavadskas, E. K., Turskis, Z., & Tamošaitiene, J. (2010). Risk assessment of construction projects. Journal of Civil Engineering and Management, 16(1), 33–46.CrossRefGoogle Scholar
  45. 45.
    Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamošaitienė, J. (2009). Multi-attribute decision-making model by applying grey numbers. Informatica, 20(2).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jalil Heidary Dahooie
    • 1
    Email author
  • Amir Salar Vanaki
    • 1
  • Navid Mohammadi
    • 1
  • Majid Ghanadian
    • 1
  1. 1.TehranIran

Personalised recommendations