Advertisement

Traction Force Microscopy in Differentiating Cells

  • Shada Abuhattum
  • Amit Gefen
  • Daphne WeihsEmail author
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 51)

Abstract

This chapter provides an overview of the traction force microscopy method used to measure forces applied by cells on substrates under different culture conditions and particularly, as reviewed here, during differentiation. Different relevant mathematical and computational theories for traction measurement are reviewed here, and are being compared based on pros and cons, and implementations in experimental setups. Furthermore, we summarize the literature which reports the effects of the mechanical environment on the differentiation and commitment of stem cells, as relevant to traction force microscopy work. We conclude by focusing on an example application, where we describe changes in the mechanical forces applied by preadipocytes onto a soft (gel) substrate during their differentiation.

Keywords

Traction force microscopy Stem cells Adipogenesis Mechanobiology 

References

  1. 1.
    Wang JHC, Lin JS (2007) Cell traction force and measurement methods. Biomech Model Mechanobiol 6(6):361–371.  https://doi.org/10.1007/s10237-006-0068-4CrossRefGoogle Scholar
  2. 2.
    Fletcher DA, Mullins D (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492.  https://doi.org/10.1038/Nature08908CrossRefGoogle Scholar
  3. 3.
    Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326(5957):1208–1212.  https://doi.org/10.1126/science.1175862CrossRefGoogle Scholar
  4. 4.
    Valiron O, Caudron N, Job D (2001) Microtubule dynamics. Cell Mol Life Sci 58(14):2069–2084CrossRefGoogle Scholar
  5. 5.
    Nagle RB (1994) A review of intermediate filament biology and their use in pathological diagnosis. Mol Biol Rep 19(1):3–21CrossRefGoogle Scholar
  6. 6.
    Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Bio 8(7):562–573.  https://doi.org/10.1038/Nrm2197CrossRefGoogle Scholar
  7. 7.
    Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472CrossRefGoogle Scholar
  8. 8.
    Kolega J, Janson LW, Taylor DL (1991) The role of solation-contraction coupling in regulating stress fiber dynamics in nonmuscle cells. J Cell Biol 114(5):993–1003CrossRefGoogle Scholar
  9. 9.
    Elson EL, Felder SF, Jay PY, Kolodney MS, Pasternak C (1999) Forces in cell locomotion. Biochem Soc Symp 65:299–314Google Scholar
  10. 10.
    Schwarz US, Soine JR (2015) Traction force microscopy on soft elastic substrates: a guide to recent computational advances. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbamcr.2015.05.028
  11. 11.
    Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76(3):1274–1278CrossRefGoogle Scholar
  12. 12.
    Moon AG, Tranquillo RT (1993) Fibroblast-populated collagen microsphere assay of cell traction force: Part 1. Continuum model. AIChE J 39(1):163–177.  https://doi.org/10.1002/aic.690390116CrossRefGoogle Scholar
  13. 13.
    Harris A, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179.  https://doi.org/10.1126/science.6987736CrossRefGoogle Scholar
  14. 14.
    Burton K, Taylor DL (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385(6615):450–454.  https://doi.org/10.1038/385450a0CrossRefGoogle Scholar
  15. 15.
    Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316CrossRefGoogle Scholar
  16. 16.
    Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665CrossRefGoogle Scholar
  17. 17.
    Abuhattum S, Gefen A, Weihs D (2015) Ratio of total traction force to projected cell area is preserved in differentiating adipocytes. Integr Biol.  https://doi.org/10.1039/c5ib00056d
  18. 18.
    Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605CrossRefGoogle Scholar
  19. 19.
    Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94(17):9114–9118CrossRefGoogle Scholar
  20. 20.
    du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102(7):2390–2395.  https://doi.org/10.1073/pnas.0408482102CrossRefGoogle Scholar
  21. 21.
    Marganski WA, Dembo M, Wang YL (2003) Measurements of cell-generated deformations on flexible substrata using correlation-based optical flow. Methods Enzymol 361:197–211CrossRefGoogle Scholar
  22. 22.
    Yang Z, Lin JS, Chen J, Wang JH (2006) Determining substrate displacement and cell traction fields—a new approach. J Theor Biol 242(3):607–616.  https://doi.org/10.1016/j.jtbi.2006.05.005MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lldlemkamp LP (1986) Theory of elasticity. ElsevierGoogle Scholar
  24. 24.
    Dembo M, Oliver T, Ishihara A, Jacobson K (1996) Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 70(4):2008–2022.  https://doi.org/10.1016/S0006-3495(96)79767-9CrossRefGoogle Scholar
  25. 25.
    Del Alamo JC, Meili R, Alonso-Latorre B, Rodriguez-Rodriguez J, Aliseda A, Firtel RA, Lasheras JC (2007) Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc Natl Acad Sci USA 104(33):13343–13348.  https://doi.org/10.1073/pnas.0705815104CrossRefGoogle Scholar
  26. 26.
    Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5(6):426–430.  https://doi.org/10.1038/Nphys1269CrossRefGoogle Scholar
  27. 27.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650.  https://doi.org/10.1002/jor.1100090504CrossRefGoogle Scholar
  28. 28.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689.  https://doi.org/10.1016/j.cell.2006.06.044CrossRefGoogle Scholar
  29. 29.
    Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95(9):4426–4438.  https://doi.org/10.1529/biophysj.108.132217CrossRefGoogle Scholar
  30. 30.
    Serena E, Zatti S, Reghelin E, Pasut A, Cimetta E, Elvassore N (2010) Soft substrates drive optimal differentiation of human healthy and dystrophic myotubes. Integr Biol 2(4):193–201.  https://doi.org/10.1039/b921401aCrossRefGoogle Scholar
  31. 31.
    Teo A, Lim M, Weihs D (2015) Embryonic stem cells growing in 3-dimensions shift from reliance on the substrate to each other for mechanical support. J Biomech 48(10):1777–1781.  https://doi.org/10.1016/j.jbiomech.2015.05.009CrossRefGoogle Scholar
  32. 32.
    Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, Chen CS (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7(9):733–736.  https://doi.org/10.1038/nmeth.1487CrossRefGoogle Scholar
  33. 33.
    Shoham N, Gefen A (2012) Mechanotransduction in adipocytes. J Biomech 45(1):1–8CrossRefGoogle Scholar
  34. 34.
    Shoham N, Mor-Yossef Moldovan L, Benayahu D, Gefen A (2015) Multiscale modeling of tissue-engineered fat: is there a deformation-driven positive feedback loop in adipogenesis? Tissue Eng Part A 21(7–8):1354–1363.  https://doi.org/10.1089/ten.TEA.2014.0505CrossRefGoogle Scholar
  35. 35.
    Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4):1484–1489.  https://doi.org/10.1073/pnas.0235407100CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Biomedical EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Biomedical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations