Advertisement

Computational Modelling of Wound Healing Insights to Develop New Treatments

  • M. J. Gómez-BenitoEmail author
  • C. Valero
  • J. M. García-Aznar
  • E. Javierre
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 51)

Abstract

About 1% of the population will suffer a severe wound during their life. Thus, it is really important to develop new techniques in order to properly treat these injuries due to the high socioeconomically impact they suppose. Skin substitutes and pressure based therapies are currently the most promising techniques to heal these injuries. Nevertheless, we are still far from finding a definitive skin substitute for the treatment of all chronic wounds. As a first step in developing new tissue engineering tools and treatment techniques for wound healing, in silico models could help in understanding the mechanisms and factors implicated in wound healing. Here, we review mathematical models of wound healing. These models include different tissue and cell types involved in healing, as well as biochemical and mechanical factors which determine this process. Special attention is paid to the contraction mechanism of cells as an answer to the tissue mechanical state. Other cell processes such as differentiation and proliferation are also included in the models together with extracellular matrix production. The results obtained show the dependency of the success of wound healing on tissue composition and the importance of the different biomechanical and biochemical factors. This could help to individuate the adequate concentration of growth factors to accelerate healing and also the best mechanical properties of the new skin substitute depending on the wound location in the body and its size and shape. Thus, the feedback loop of computational models, experimental works and tissue engineering could help to identify the key features in the design of new treatments to heal severe wounds.

Keywords

Wound healing Mechanobiology Wound contraction Skin substitutes 

Notes

Acknowledgements

This research was supported by the European Research Council (ERC) through the project ERC-2012-StG 306751 and the Spanish Ministry of Economy and Competitiveness through the project DPI2012-32880 (project partly founded by the European Development Fund).

References

  1. 1.
    Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R (2012) Structure and function of the epidermis related to barrier properties. Clin Dermatol 30(3):257–262.  https://doi.org/10.1016/j.clindermatol.2011.08.007CrossRefGoogle Scholar
  2. 2.
    Bennett G, Dealey C, Posnett J (2004) The cost of pressure ulcers in the UK. Age Ageing 33(3):230–235.  https://doi.org/10.1093/ageing/afh086CrossRefGoogle Scholar
  3. 3.
    Bischoff JE, Arruda EM, Grosh K (2000) Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model. J Biomech 33(6):645–652.  https://doi.org/10.1016/S0021-9290(00)00018-XCrossRefGoogle Scholar
  4. 4.
    Borau C, Kamm RD, García-Aznar JM (2011) Mechano-sensing and cell migration: a 3D model approach. Phys Biol 8(6):066008Google Scholar
  5. 5.
    Borau C, Polacheck WJ, Kamm RD, García-Aznar JM (2014) Probabilistic Voxel-FE model for single cell motility in 3D. In Silico Cell Tissue Sci 1:2.  https://doi.org/10.1186/2196-050X-1-2
  6. 6.
    Bosman F, Cleutjens J, Beek C, Havenith M (1989) Basement membrane heterogeneity. Histochem J 21(11):629–633.  https://doi.org/10.1007/BF01002481CrossRefGoogle Scholar
  7. 7.
    Buganza Tepole A, Gosain AK, Kuhl E (2014) Computational modeling of skin: using stress profiles as predictor for tissue necrosis in reconstructive surgery. Comput Struct 143:32–39CrossRefGoogle Scholar
  8. 8.
    Cox HT (1941) The cleavage lines of the skin. Br J Surg 29(114):234–240.  https://doi.org/10.1002/bjs.18002911408CrossRefGoogle Scholar
  9. 9.
    Dealey C, Posnett J, Walker A (2012) The cost of pressure ulcers in the United Kingdom. J Wound Care 21(6):261–266.  https://doi.org/10.12968/jowc.2012.21.6.261CrossRefGoogle Scholar
  10. 10.
    Edalat F, Sheu I, Manoucheri S, Khademhosseini A (2012) Material strategies for creating artificial cell-instructive niches. Curr Opin Biotechnol 23(5):820–825.  https://doi.org/10.1016/j.copbio.2012.05.007CrossRefGoogle Scholar
  11. 11.
    Ehrlich HP (2013) A snapshot of direct cell-cell communications in wound healing and scarring. Adv Wound Care 2(4):113–121.  https://doi.org/10.1089/wound.2012.0414
  12. 12.
    Flegg JA, McElwain DLS, Byrne HM, Turner IW (2009) A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. Plos Comput Biol 5(7):e1000451Google Scholar
  13. 13.
    Flegg JA, Byrne HM, McElwain LS (2010) Mathematical model of hyperbaric oxygen therapy applied to chronic diabetic wounds. Bull Math Biol 72(7):1867–1891MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Flynn C, McCormack BAO (2010) Simulating the wrinkling and aging of skin with a multi-layer finite element model. J Biomech 43(3):442–448.  https://doi.org/10.1016/j.jbiomech.2009.10.007CrossRefGoogle Scholar
  15. 15.
    Flynn C, Taberner A, Nielsen P (2011) Modeling the mechanical response of in vivo human skin under a rich set of deformations. Ann Biomed Eng 39(7):1935–1946.  https://doi.org/10.1007/s10439-011-0292-7CrossRefGoogle Scholar
  16. 16.
    Ganapathy N, Venkataraman SS, Daniel R, Aravind RJ, Kumarakrishnan VB (2012) Molecular biology of wound healing. J Pharm Bioallied Sci 4(Suppl 2):S334–S337.  https://doi.org/10.4103/0975-7406.100294CrossRefGoogle Scholar
  17. 17.
    Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35.  https://doi.org/10.1098/rsif.2005.0073CrossRefGoogle Scholar
  18. 18.
    Gomez-Benito MJ, Gonzalez-Torres LA, Reina-Romo E, Grasa J, Seral B, Garcia-Aznar JM (2011) Influence of high-frequency cyclical stimulation on the bone fracture-healing process: mathematical and experimental models. Phil Trans R Soc A 369:4278–4294Google Scholar
  19. 19.
    Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011) Skin tissue engineering in vivo and in vitro applications. Adv Drug Deliv Rev 63(45):352–366.  https://doi.org/10.1016/j.addr.2011.01.005
  20. 20.
    Heit YI, Dastouri P, Helm DL, Pietramaggiori G, Younan G, Erba P, Mnster S, Orgill DP, Scherer SS (2012) Foam pore size is a critical interface parameter of suction-based wound healing devices. Plast Reconstr Surg 129(3):589–597.  https://doi.org/10.1097/PRS.0b013e3182402c89
  21. 21.
    Hinz B (2006) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127(3):526–537CrossRefGoogle Scholar
  22. 22.
    Huang C, Leavitt T, Bayer LR, Orgill DP (2014) Effect of negative pressure wound therapy on wound healing. Curr Probl Surg 51(7):301–331.  https://doi.org/10.1067/j.cpsurg.2014.04.001CrossRefGoogle Scholar
  23. 23.
    Ilizarov G, Soybelman L (1969) Some clinical and experimental data concerning lengthening of lower extremities. Exp Khir Arrestar 14:27Google Scholar
  24. 24.
    Javierre E, Vermolen FJ, Vuik C, van der Zwaag S (2008) Numerical modelling of epidermal wound healing. In: Numerical Mathematics and Advanced Applications, pp. 83–90. Springer-Verlag Berlin, Berlin; Heidelberg Platz 3, D-14197 Berlin, GermanyGoogle Scholar
  25. 25.
    Javierre E, Moreo P, Doblare M, Garcia-Aznar JM (2009) Numerical modeling of a mechano-chemical theory for wound contraction analysis. Int J Solids Struct 46(20):3597–3606zbMATHCrossRefGoogle Scholar
  26. 26.
    Langer K (1861) Zur anatomie und physiologie der haut. ber die spaltbarkeit der cutis. Sitzungsbericht der Mathematisch-naturwissenschaftlichen Classe der Wiener Kaiserlichen Academie der Wissenschaften Abt 44Google Scholar
  27. 27.
    Lanir Y, Fung YC (1974) Two-dimensional mechanical properties of rabbit skin II. experimental results. J Biomech 7(2):171–182.  https://doi.org/10.1016/0021-9290(74)90058-X
  28. 28.
    Leung A, Crombleholme TM, Keswani SG (2012) Fetal wound healing: implications for minimal scar formation. Curr Opin Pediatr 24(3):371–378.  https://doi.org/10.1097/MOP.0b013e3283535790CrossRefGoogle Scholar
  29. 29.
    Levenson SM, Geever EF, Crowley LV, Oates JF, Berard CW, Rosen H (1965) Healing of rat skin wounds. Ann Surg 161(2):293–308CrossRefGoogle Scholar
  30. 30.
    Levy A, Kopplin K, Gefen A (2013) Simulations of skin and subcutaneous tissue loading in the buttocks while regaining weight-bearing after a push-up in wheelchair users. J Mech Behav Biomed Mater 28:436–447.  https://doi.org/10.1016/j.jmbbm.2013.04.015CrossRefGoogle Scholar
  31. 31.
    Lindblad WJ (2008) Considerations for selecting the correct animal model for dermal wound-healing studies. J Biomater Sci Polym Ed 19(8):1087–1096.  https://doi.org/10.1163/156856208784909390CrossRefGoogle Scholar
  32. 32.
    Lott-Crumpler DA, Chaudhry HR (2001) Optimal patterns for suturing wounds of complex shapes to foster healing. J Biomech 34(1):51–58CrossRefGoogle Scholar
  33. 33.
    Maggelakis S (2003) A mathematical model of tissue replacement during epidermal wound healing. Appl Math Model 27(3):189–196zbMATHCrossRefGoogle Scholar
  34. 34.
    Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA, Firozi P, Woo SH, Ranade S, Patapoutian A, Lumpkin EA (2014) Epidermal merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621.  https://doi.org/10.1038/nature13250CrossRefGoogle Scholar
  35. 35.
    Manoussaki D (2003) A mechanochemical model of angiogenesis and vasculogenesis. Esaim-Math Model Numer Anal (Modelisation Mathematique Et Analyse Numerique) 37(4):581–599MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Marinkovich MP, Keene DR, Rimberg CS, Burgeson RE (1993) Cellular origin of the dermal-epidermal basement membrane. Dev Dyn 197(4):255–267.  https://doi.org/10.1002/aja.1001970404CrossRefGoogle Scholar
  37. 37.
    Menon SN, Flegg JA, McCue SW, Schugart RC, Dawson RA, McElwain DLS (2012) Modelling the interaction of keratinocytes and fibroblasts during normal and abnormal wound healing processes. Proc R Soc Lond B Biol Sci 279(1741):3329–3338.  https://doi.org/10.1098/rspb.2012.0319CrossRefGoogle Scholar
  38. 38.
    Metcalfe AD, Ferguson MWJ (2007) Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 28(34):5100–5113.  https://doi.org/10.1016/j.biomaterials.2007.07.031
  39. 39.
    Metcalfe AD, Ferguson MWJ (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14):413–437.  https://doi.org/10.1098/rsif.2006.0179
  40. 40.
    Moreo P, García-Aznar JM, Doblaré M (2008) Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomater 4(3):613–621CrossRefGoogle Scholar
  41. 41.
    Morykwas MJ, Argenta LC, Shelton-Brown EI, McGuirt W (1997) Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann Plast Surg 38(6):553–562CrossRefGoogle Scholar
  42. 42.
    Murphy KE, Hall CL, McCue SW, McElwain DLS (2011) A two-compartment mechanochemical model of the roles of transforming growth factor \(\beta \) and tissue tension in dermal wound healing. J Theor Biol 272(1):145–159MathSciNetzbMATHGoogle Scholar
  43. 43.
    Ní Annaidh A, Bruyère K, Destrade M, Gilchrist MD, Otténio M (2012) Characterization of the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater 5(1):139–148.  https://doi.org/10.1016/j.jmbbm.2011.08.016CrossRefGoogle Scholar
  44. 44.
    Olsen L, Sherratt JA, Maini PK (1995) A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. J Theor Biol 177(2):113–128CrossRefGoogle Scholar
  45. 45.
    Pettet G, Byrne H, Mcelwain D, Norbury J (1996) A model of wound-healing angiogenesis in soft tissue. Math Biosci 136(1):35–63Google Scholar
  46. 46.
    Pettet G, Chaplain M, McElwain D, Byrne H (1996) On the role of angiogenesis in wound healing RID A-5355-2010. Proc R Soc Lond Ser B Biol Sci 263(1376):1487–1493Google Scholar
  47. 47.
    Reina-Romo E, Gómez-Benito MJ, Domínguez J, García-Aznar JM (2012) A lattice-based approach to model distraction osteogenesis. J Biomech 45(16):2736–2742.  https://doi.org/10.1016/j.jbiomech.2012.09.004CrossRefGoogle Scholar
  48. 48.
    Ridge MD, Wright V (1966) The directional effects of skin. J Investig Dermatol 46(4):341–346CrossRefGoogle Scholar
  49. 49.
    Schugart RC, Friedman A, Zhao R, Sen CK (2008) Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc Natl Acad Sci U S A 105(7):2628–2633CrossRefGoogle Scholar
  50. 50.
    Seneschal J, Clark R, Gehad A, Baecher-Allan C, Kupper T (2012) Human epidermal langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory t cells. Immunity 36(5):873–884.  https://doi.org/10.1016/j.immuni.2012.03.018CrossRefGoogle Scholar
  51. 51.
    Sherratt J, Murray J (1990) Models of epidermal wound-healing. Proc R Soc B Biol Sci 241(1300):29–36CrossRefGoogle Scholar
  52. 52.
    Sherratt JA, Sage EH, Murray JD (1993) Chemical control of eukaryotic cell movement: a new model. J Theor Biol 162(1):23–40.  https://doi.org/10.1006/jtbi.1993.1074CrossRefGoogle Scholar
  53. 53.
    Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7(43):229–258.  https://doi.org/10.1098/rsif.2009.0403CrossRefGoogle Scholar
  54. 54.
    Smith LT, Holbrook KA (1986) Embryogenesis of the dermis in human skin. Pediatr Dermatol 3(4):271–280.  https://doi.org/10.1111/j.1525-1470.1986.tb00525.xCrossRefGoogle Scholar
  55. 55.
    Tao Y, Winkler M (2011) A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J Math Anal 43(2):685–704MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Tobin DJ (2006) Biochemistry of human skin-our brain on the outside. Chem Soc Rev 35(1):52–67.  https://doi.org/10.1039/B505793KCrossRefGoogle Scholar
  57. 57.
    Tranquillo R, Murray J (1992) Continuum model of Fibroblast-Driven wound contraction—inflammation-mediation. J Theor Biol 158(2):135CrossRefGoogle Scholar
  58. 58.
    Uitto J, Olsen DR, Fazio MJ (1989) Extracellular matrix of the skin: 50 years of progress. J Invest Dermatol 92(4s):61S–77SCrossRefGoogle Scholar
  59. 59.
    Valero C, Javierre E, García-Aznar JM, Gómez-Benito MJ (2013) Numerical modelling of the angiogenesis process in wound contraction. Biomech Model Mechanobiol 12(2):349–360.  https://doi.org/10.1007/s10237-012-0403-xCrossRefGoogle Scholar
  60. 60.
    Valero C, Javierre E, García-Aznar JM, Gómez-Benito MJ (2014) A cell-regulatory mechanism involving feedback between contraction and tissue formation guides wound healing progression. PLoS ONE 9(3):e92774.  https://doi.org/10.1371/journal.pone.0092774
  61. 61.
    Valero C, Javierre E, García-Aznar JM, Gómez-Benito MJ (2014) Nonlinear finite element simulations of injuries with free boundaries: Application to surgical wounds. Int J Numer Methods Biomed Eng 30(6):616–633.  https://doi.org/10.1002/cnm.2621
  62. 62.
    Valero C, Javierre E, García-Aznar JM, Gómez-Benito MJ, Menzel A (2015) Modeling of anisotropic wound healing. J Mech Phys Solids 79:80–91.  https://doi.org/10.1016/j.jmps.2015.03.009MathSciNetCrossRefGoogle Scholar
  63. 63.
    Vermolen FJ, Javierre E (2010) Computer simulations from a finite-element model for wound contraction and closure. J Tissue Viability 19(2):43–53CrossRefGoogle Scholar
  64. 64.
    Vermolen FJ, Javierre E (2012) A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure. J Math Biol 65(5):967–996MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Xue C, Friedman A, Sen CK (2009) A mathematical model of ischemic cutaneous wounds. Proc Natl Acad Sci U S A 106(39):16782–16787Google Scholar
  66. 66.
    Yildirimer L, Thanh NTK, Seifalian AM (2012) Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol 30(12):638–648.  https://doi.org/10.1016/j.tibtech.2012.08.004CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. J. Gómez-Benito
    • 1
    Email author
  • C. Valero
    • 1
  • J. M. García-Aznar
    • 1
  • E. Javierre
    • 2
  1. 1.Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A)University of ZaragozaZaragozaSpain
  2. 2.Centro Universitario de la Defensa, Academia General Militar; Instituto Universitario de investigación en Matemáticas y Aplicaciones (IUMA)ZaragozaSpain

Personalised recommendations