Shock Compression of Ductile Polycrystals

  • John D. Clayton
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)


Modeling of shock compression of isotropic, polycrystalline elastic-plastic solids that deform by dislocation glide is undertaken. General governing equations are presented in forms referred to the thermoelastically unloaded intermediate configuration. Internal energy density of the material depends on a thermoelastic Eulerian strain tensor, entropy, and an internal state variable representative of dislocation density. Dislocation glide is incompressible, but inelastic volume changes arising from residual local strain fields and core effects of dislocations are captured. A numerical method is advanced for extracting inelastic constitutive response information from particle velocity histories of polycrystalline samples under planar shock loading. The only parameters entering the procedure are fundamental thermoelastic properties and assumed bounds on the fraction of plastic work corresponding to energy storage of generated dislocations in the lattice. Densities of statistically stored and geometrically necessary dislocations, in addition to shear stress, plastic strain, plastic strain rate, and temperature, are an outcome of the analysis. The model is implemented for polycrystalline aluminum and copper. Certain results are compared with others in the literature obtained under different kinematic and thermodynamic assumptions.


Weak shock wave Polycrystal plasticity Thermodynamics Metals Third-order elasticity 


  1. 11.
    Asaro, R.: Crystal plasticity. J. Appl. Mech. 50, 921–934 (1983)zbMATHADSGoogle Scholar
  2. 14.
    Ashby, M.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)CrossRefADSGoogle Scholar
  3. 16.
    Austin, R., McDowell, D.: A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int. J. Plast. 27, 1–24 (2011)CrossRefGoogle Scholar
  4. 17.
    Austin, R., McDowell, D.: Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum. Int. J. Plast. 32, 134–154 (2012)CrossRefGoogle Scholar
  5. 20.
    Bammann, D., Chiesa, M., Horstemeyer, M., Weingarten, L.: Failure in ductile materials using finite element methods. In: Jones, N., Wierzbicki, T. (eds.) Structural Crashworthiness and Failure, pp. 1–54. Elsevier, London (1993)Google Scholar
  6. 27.
    Becker, R.: Effects of crystal plasticity on materials loaded at high pressures and strain rates. Int. J. Plast. 20, 1983–2006 (2004)zbMATHCrossRefGoogle Scholar
  7. 33.
    Bennett, K., Regueiro, R., Borja, R.: Finite strain elastoplasticity considering the Eshelby stress for materials undergoing plastic volume change. Int. J. Plast. 77, 214–245 (2016)CrossRefGoogle Scholar
  8. 35.
    Bever, M., Holt, D., Titchener, A.: The stored energy of cold work. Prog. Mater. Sci. 17, 5–177 (1973)CrossRefGoogle Scholar
  9. 37.
    Bilby, B., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A 231, 263–273 (1955)MathSciNetCrossRefADSGoogle Scholar
  10. 38.
    Bilby, B., Gardner, L., Stroh, A.: Continuous distributions of dislocations and the theory of plasticity. In: Proceedings of the 9th International Congress of Applied Mechanics, vol. 8, pp. 35–44. University de Bruxelles, Brussels (1957)Google Scholar
  11. 42.
    Bishop, J., Hill, R.: A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philos. Mag. 42, 414–427 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 57.
    Bulatov, V., Richmond, O., Glazov, M.: An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum. Acta Mater. 47, 3507–3514 (1999)CrossRefGoogle Scholar
  13. 62.
    Casem, D., Dandekar, D.: Shock and mechanical response of 2139-T8 aluminum. J. Appl. Phys. 111, 063508 (2012)CrossRefADSGoogle Scholar
  14. 72.
    Cheng, J., Ghosh, S.: A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys. Int. J. Plast. 67, 148–170 (2015)CrossRefGoogle Scholar
  15. 78.
    Chua, J., Ruoff, A.: Pressure dependence of the yield stress of potassium at low homologous temperature. J. Appl. Phys. 46, 4659–4663 (1975)CrossRefADSGoogle Scholar
  16. 80.
    Clarebrough, L., Hargreaves, M., West, G.: The density of dislocations in compressed copper. Acta Metall. 5, 738–740 (1957)CrossRefGoogle Scholar
  17. 81.
    Clayton, J.: Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J. Mech. Phys. Solids 53, 261–301 (2005)zbMATHADSGoogle Scholar
  18. 85.
    Clayton, J.: A model for deformation and fragmentation in crushable brittle solids. Int. J. Impact Eng. 35, 269–289 (2008)CrossRefGoogle Scholar
  19. 86.
    Clayton, J.: A non-linear model for elastic dielectric crystals with mobile vacancies. Int. J. Non Linear Mech. 44, 675–688 (2009)CrossRefADSGoogle Scholar
  20. 87.
    Clayton, J.: A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc. R. Soc. Lond. A 465, 307–334 (2009)MathSciNetzbMATHADSGoogle Scholar
  21. 88.
    Clayton, J.: Modeling effects of crystalline microstructure, energy storage mechanisms, and residual volume changes on penetration resistance of precipitate-hardened aluminum alloys. Compos. B: Eng. 40, 443–450 (2009)CrossRefGoogle Scholar
  22. 89.
    Clayton, J.: Deformation, fracture, and fragmentation in brittle geologic solids. Int. J. Fract. 173, 151–172 (2010)zbMATHGoogle Scholar
  23. 90.
    Clayton, J.: Modeling finite deformations in trigonal ceramic crystals with lattice defects. Int. J. Plast. 26, 1357–1386 (2010)zbMATHGoogle Scholar
  24. 91.
    Clayton, J.: Modeling nonlinear electromechanical behavior of shocked silicon carbide. J. Appl. Phys. 107, 013520 (2010)ADSGoogle Scholar
  25. 93.
    Clayton, J.: A nonlinear thermomechanical model of spinel ceramics applied to aluminum oxynitride (AlON). J. Appl. Mech. 78, 011013 (2011)ADSGoogle Scholar
  26. 94.
    Clayton, J.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)zbMATHGoogle Scholar
  27. 96.
    Clayton, J.: On anholonomic deformation, geometry, and differentiation. Math. Mech. Solids 17, 702–735 (2012)MathSciNetCrossRefGoogle Scholar
  28. 99.
    Clayton, J.: Nonlinear Eulerian thermoelasticity for anisotropic crystals. J. Mech. Phys. Solids 61, 1983–2014 (2013)MathSciNetzbMATHCrossRefADSGoogle Scholar
  29. 100.
    Clayton, J.: An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q. J. Mech. Appl. Math. 67, 127–158 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 102.
    Clayton, J.: Differential Geometry and Kinematics of Continua. World Scientific, Singapore (2014)CrossRefGoogle Scholar
  31. 105.
    Clayton, J.: Shock compression of metal crystals: a comparison of Eulerian and Lagrangian elastic-plastic theories. Int. J. Appl. Mech. 6, 1450048 (2014)CrossRefGoogle Scholar
  32. 106.
    Clayton, J.: Crystal thermoelasticity at extreme loading rates and pressures: analysis of higher-order energy potentials. Extreme Mech. Lett. 3, 113–122 (2015)CrossRefGoogle Scholar
  33. 107.
    Clayton, J.: Defects in nonlinear elastic crystals: differential geometry, finite kinematics, and second-order analytical solutions. Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM) 95, 476–510 (2015)MathSciNetzbMATHCrossRefADSGoogle Scholar
  34. 108.
    Clayton, J.: Modeling and simulation of ballistic penetration of ceramic-polymer-metal layered systems. Math. Probl. Eng. 2015, 709498 (2015)Google Scholar
  35. 122.
    Clayton, J.: Nonlinear thermomechanics for analysis of weak shock profile data in ductile polycrystals. J. Mech. Phys. Solids 124, 714–757 (2019)MathSciNetCrossRefADSGoogle Scholar
  36. 123.
    Clayton, J., Bammann, D.: Finite deformations and internal forces in elastic-plastic crystals: interpretations from nonlinear elasticity and anharmonic lattice statics. J. Eng. Mater. Technol. 131, 041201 (2009)CrossRefGoogle Scholar
  37. 136.
    Clayton, J., Lloyd, J.: Analysis of nonlinear elastic aspects of precursor attenuation in shock-compressed metallic crystals. J. Phys. Commun. 2, 045032 (2018)CrossRefGoogle Scholar
  38. 137.
    Clayton, J., McDowell, D.: Finite polycrystalline elastoplasticity and damage: multiscale kinematics. Int. J. Solids Struct. 40, 5669–5688 (2003)zbMATHCrossRefGoogle Scholar
  39. 138.
    Clayton, J., McDowell, D.: A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int. J. Plast. 19, 1401–1444 (2003)zbMATHCrossRefGoogle Scholar
  40. 140.
    Clayton, J., Tonge, A.: A nonlinear anisotropic elastic-inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide. Int. J. Solids Struct. 64–65, 191–207 (2015)CrossRefGoogle Scholar
  41. 141.
    Clayton, J., Schroeter, B., Graham, S., McDowell, D.: Distributions of stretch and rotation in OFHC Cu. J. Eng. Mater. Technol. 124, 302–313 (2002)CrossRefGoogle Scholar
  42. 142.
    Clayton, J., McDowell, D., Bammann, D.: A multiscale gradient theory for elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 42, 427–457 (2004)zbMATHCrossRefGoogle Scholar
  43. 143.
    Clayton, J., Bammann, D., McDowell, D.: Anholonomic configuration spaces and metric tensors in finite strain elastoplasticity. Int. J. Non Linear Mech. 39, 1039–1049 (2004)zbMATHCrossRefGoogle Scholar
  44. 144.
    Clayton, J., Bammann, D., McDowell, D.: A geometric framework for the kinematics of crystals with defects. Philos. Mag. 85, 3983–4010 (2005)CrossRefADSGoogle Scholar
  45. 145.
    Clayton, J., McDowell, D., Bammann, D.: Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 22, 210–256 (2006)zbMATHCrossRefGoogle Scholar
  46. 146.
    Clayton, J., Chung, P., Grinfeld, M., Nothwang, W.: Continuum modeling of charged vacancy migration in elastic dielectric solids, with application to perovskite thin films. Mech. Res. Commun. 35, 57–64 (2008)zbMATHCrossRefGoogle Scholar
  47. 147.
    Clayton, J., Chung, P., Grinfeld, M., Nothwang, W.: Kinematics, electromechanics, and kinetics of dielectric and piezoelectric crystals with lattice defects. Int. J. Eng. Sci. 46, 10–30 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 150.
    Clayton, J., Hartley, C., McDowell, D.: The missing term in the decomposition of finite deformation. Int. J. Plast. 52, 51–76 (2014)CrossRefGoogle Scholar
  49. 152.
    Clifton, R.: On the analysis of elastic visco-plastic waves of finite uniaxial strain. In: Burke, J., Weiss, V. (eds.) Shock Waves and the Mechanical Properties of Solids, pp. 73–116. Syracuse University Press, New York (1971)Google Scholar
  50. 153.
    Clifton, R., Markenscoff, X.: Elastic precursor decay and radiation from nonuniformly moving dislocations. J. Mech. Phys. Solids 29, 227–251 (1981)zbMATHCrossRefADSGoogle Scholar
  51. 154.
    Coleman, B., Gurtin, M.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)CrossRefADSGoogle Scholar
  52. 163.
    Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)zbMATHGoogle Scholar
  53. 172.
    Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)zbMATHGoogle Scholar
  54. 179.
    Eshelby, J.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 185.
    Farren, W.: The heat developed during plastic extension of metals. Proc. R. Soc. Lond. A 107, 422–451 (1925)CrossRefADSGoogle Scholar
  56. 187.
    Foreman, A.: Dislocation energies in anisotropic crystals. Acta Metall. 3, 322–330 (1955)CrossRefGoogle Scholar
  57. 203.
    Godfrey, A., Cao, W., Liu, Q., Hansen, N.: Stored energy, microstructure, and flow stress of deformed metals. Metall. Mater. Trans. A 36, 2371–2378 (2005)CrossRefGoogle Scholar
  58. 218.
    Gray, G., Bourne, N., Millett, J.: Shock response of tantalum: lateral stress and shear strength through the front. J. Appl. Phys. 94, 6430–6436 (2003)CrossRefADSGoogle Scholar
  59. 224.
    Guinan, M., Steinberg, D.: Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 35, 1501–1512 (1974)CrossRefADSGoogle Scholar
  60. 241.
    Holder, J., Granato, A.: Thermodynamic properties of solids containing defects. Phys. Rev. 182, 729–741 (1969)CrossRefADSGoogle Scholar
  61. 246.
    Hull, D., Bacon, D.: Introduction to Dislocations. Butterworth-Heinemann, Oxford (1984)Google Scholar
  62. 257.
    Johnson, J., Barker, L.: Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. J. Appl. Phys. 40, 4321–4334 (1969)CrossRefADSGoogle Scholar
  63. 258.
    Johnson, G., Cook, W.: A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, pp. 541–547. The Hague, Netherlands (1983)Google Scholar
  64. 259.
    Johnson, J., Jones, O., Michaels, T.: Dislocation dynamics and single-crystal constitutive relations: shock-wave propagation and precursor decay. J. Appl. Phys. 41, 2330–2339 (1970)CrossRefADSGoogle Scholar
  65. 260.
    Johnson, J., Hixson, R., Gray III, G., Morris, C.: Quasi-elastic release in shock-compressed solids. J. Appl. Phys. 72, 429–441 (1992)CrossRefADSGoogle Scholar
  66. 268.
    Kocks, U.: The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. B 1, 1121–1143 (1970)CrossRefADSGoogle Scholar
  67. 269.
    Kocks, U., Mecking, H.: Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48, 171–273 (2003)CrossRefGoogle Scholar
  68. 270.
    Kocks, U., Argon, A., Ashby, M.: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1–291 (1975)CrossRefGoogle Scholar
  69. 278.
    Kratochvil, J.: Finite-strain theory of inelastic behavior of crystalline solids. In: Sawczuk, A. (ed.) Foundations of Plasticity, pp. 401–415. Noordhoff, Leyden (1972)Google Scholar
  70. 279.
    Kr\(\ddot {\text{o}}\)ner, E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)Google Scholar
  71. 308.
    Lloyd, J., Clayton, J., Austin, R., McDowell, D.: Modeling single-crystal microstructure evolution due to shock loading. J. Phys. Conf. Ser. 500, 112040 (2014)CrossRefGoogle Scholar
  72. 309.
    Lloyd, J., Clayton, J., Austin, R., McDowell, D.: Plane wave simulation of elastic-viscoplastic single crystals. J. Mech. Phys. Solids 69, 14–32 (2014)MathSciNetzbMATHCrossRefADSGoogle Scholar
  73. 310.
    Lloyd, J., Clayton, J., Becker, R., McDowell, D.: Simulation of shock wave propagation in single crystal and polycrystalline aluminum. Int. J. Plast. 60, 118–144 (2014)CrossRefGoogle Scholar
  74. 311.
    Lloyd, J., Clayton, J., Austin, R., McDowell, D.: Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions. Adv. Model. Simul. Eng. Sci. 2, 14 (2015)Google Scholar
  75. 313.
    Lubarda, V.: New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals. J. Mech. Phys. Solids 45, 471–490 (1997)zbMATHCrossRefADSGoogle Scholar
  76. 314.
    Lubarda, V.: Elastoplasticity Theory. CRC Press, Boca Raton (2001)zbMATHCrossRefGoogle Scholar
  77. 315.
    Luscher, D., Bronkhorst, C., Alleman, C., Addessio, F.: A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions. J. Mech. Phys. Solids 61, 1877–1894 (2013)MathSciNetCrossRefADSGoogle Scholar
  78. 320.
    Marsh, S. (ed.): LASL Shock Hugoniot Data. University of California Press, Berkeley (1980)Google Scholar
  79. 322.
    Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs NJ (1983)zbMATHGoogle Scholar
  80. 324.
    Maugin, G.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)zbMATHCrossRefGoogle Scholar
  81. 329.
    McQueen, R., Marsh, S., Taylor, J., Fritz, J., Carter, W.: The equation of state of solids from shock wave studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, pp. 294–417. Academic Press, New York (1970)Google Scholar
  82. 338.
    Millett, J., Whiteman, G., Bourne, N.: Lateral stress and shear strength behind the shock front in three face centered cubic metals. J. Appl. Phys. 105, 033515 (2009)CrossRefADSGoogle Scholar
  83. 341.
    Molinari, A., Ravichandran, G.: Fundamental structure of steady plastic shock waves in metals. J. Appl. Phys. 95, 1718–1732 (2004)CrossRefADSGoogle Scholar
  84. 352.
    Nemat-Nasser, S.: Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  85. 368.
    Preston, D., Tonks, D., Wallace, D.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93, 211–220 (2003)CrossRefADSGoogle Scholar
  86. 380.
    Reed, B., Patterson, J., Swift, D., Stolken, J., Minich, R., Kumar, M.: A unified approach for extracting strength information from nonsimple compression waves. Part II. Experiment and comparison with simulation. J. Appl. Phys. 110, 113506 (2011)Google Scholar
  87. 381.
    Reed, B., Stolken, J., Minich, R., Kumar, M.: A unified approach for extracting strength information from nonsimple compression waves. Part I: Thermodynamics and numerical implementation. J. Appl. Phys. 110, 113505 (2011)Google Scholar
  88. 382.
    Regueiro, R., Bammann, D., Marin, E., Garikipati, K.: A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects. J. Eng. Mater. Technol. 124, 380–387 (2002)CrossRefGoogle Scholar
  89. 386.
    Rice, J.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)zbMATHCrossRefADSGoogle Scholar
  90. 387.
    Rittel, D., Kidane, A., Alkhader, M., Venkert, A., Landau, P., Ravichandran, G.: On the dynamically stored energy of cold work in pure single crystal and polycrystalline copper. Acta Mater. 60, 3719–3728 (2012)CrossRefGoogle Scholar
  91. 389.
    Rohatgi, A., Vecchio, K.: The variation of dislocation density as a function of the stacking fault energy in shock-deformed fcc materials. Mater. Sci. Eng. A 328, 256–266 (2002)CrossRefGoogle Scholar
  92. 392.
    Rosakis, P., Rosakis, A., Ravichandran, G., Hodowany, J.: A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48, 581–607 (2000)MathSciNetzbMATHCrossRefADSGoogle Scholar
  93. 403.
    Scheidler, M., Wright, T.: A continuum framework for finite viscoplasticity. Int. J. Plast. 17, 1033–1085 (2001)zbMATHCrossRefGoogle Scholar
  94. 404.
    Scheidler, M., Wright, T.: Classes of flow rules for finite viscoplasticity. Int. J. Plast. 19, 1119–1165 (2003)zbMATHCrossRefGoogle Scholar
  95. 409.
    Seeger, A., Buck, O.: Die experimentelle Ermittlung der elastischen Konstanten höherer Ordnung. Zeitschrift fur Naturforschung A 15, 1056–1067 (1960)zbMATHADSGoogle Scholar
  96. 410.
    Seeger, A., Haasen, P.: Density changes of crystals containing dislocations. Philos. Mag. 3, 470–475 (1958)CrossRefADSGoogle Scholar
  97. 423.
    Steinberg, D., Cochran, S., Guinan, M.: A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51, 1498–1504 (1980)CrossRefADSGoogle Scholar
  98. 425.
    Steinmann, P.: Geometrical Foundations of Continuum Mechanics. Springer, Berlin (2015)zbMATHCrossRefGoogle Scholar
  99. 431.
    Swegle, J., Grady, D.: Shock viscosity and the prediction of shock wave rise times. J. Appl. Phys. 58, 692–701 (1985)ADSGoogle Scholar
  100. 434.
    Taylor, G.: Plastic strain in metals. J. Inst. Met. 62, 307–324 (1938)Google Scholar
  101. 436.
    Taylor, G., Quinney, H.: The latent energy remaining in a metal after cold working. Proc. R. Soc. Lond. A 143, 307–326 (1934)CrossRefADSGoogle Scholar
  102. 445.
    Thurston, R.: Effective elastic coefficients for wave propagation in crystals under stress. J. Acoust. Soc. Am. 37, 348–356 (1965)MathSciNetCrossRefADSGoogle Scholar
  103. 447.
    Thurston, R., Brugger, K.: Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys. Rev. 133, 1604–1612 (1964)zbMATHCrossRefADSGoogle Scholar
  104. 453.
    Tonks, D.: The DataShoP: A database of weak-shock constitutive data. Tech. Rep. LA-12068, Los Alamos National Laboratory, Los Alamos, NM (1991)Google Scholar
  105. 455.
    Toupin, R., Rivlin, R.: Dimensional changes in crystals caused by dislocations. J. Math. Phys. 1, 8–15 (1960)MathSciNetzbMATHADSGoogle Scholar
  106. 471.
    Wallace, D.: Flow process of weak shocks in solids. Phys. Rev. B 22, 1487–1494 (1980)MathSciNetCrossRefADSGoogle Scholar
  107. 472.
    Wallace, D.: Irreversible thermodynamics of flow in solids. Phys. Rev. B 22, 1477–1486 (1980)MathSciNetCrossRefADSGoogle Scholar
  108. 474.
    Wallace, D.: Structure of shocks in solids and liquids. Tech. Rep. LA-12020, Los Alamos National Laboratory, Los Alamos, NM (1991)Google Scholar
  109. 481.
    Warnes, R., Tonks, D.: Measurement and analysis of 3-GPa shock wave profiles in annealed OFE copper. In: Schmidt, S., Johnson, J., Davison, L. (eds.) Shock Compression of Condensed Matter, pp. 329–332. Elsevier, Amsterdam (1989)Google Scholar
  110. 482.
    Wasserbach, W.: Third-order constants of a cubic quasi-isotropic solid. Phys. Status Solidi B 159, 689–697 (1990)CrossRefADSGoogle Scholar
  111. 494.
    Wright, T.: Stored energy and plastic volume change. Mech. Mater. 1, 185–187 (1982)CrossRefGoogle Scholar
  112. 495.
    Wright, T.: The Physics and Mathematics of Adiabatic Shear Bands. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  113. 505.
    Zerilli, F., Armstrong, R.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61, 1816–1825 (1987)CrossRefADSGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • John D. Clayton
    • 1
    • 2
  1. 1.Impact Physics CCRL-WMP-CUnited States Army Research LaboratoryAberdeenUSA
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations