Genetic Basis of Resistance to Citrus Canker Disease

  • Ziniu DengEmail author
  • Xianfeng Ma
Part of the Compendium of Plant Genomes book series (CPG)


Citrus canker, caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc), is a destructive quarantine disease worldwide. As no commercial cultivars are resistant to the disease and its control is difficult, selection of resistant genotypes becomes the essential solution. A large quantity of citrus genotypes were screened for their behaviors to the pathogen infection during the past decades, unfortunately almost all the tested genotypes are susceptible when they are artificially inoculated with Xcc. The pathogen infects citrus host through attachment on the tissue surface, and then penetration into the tissue for colonization. The successful infection relies on the formation of biofilm, which is affected by different factors including extracellular polymeric substances (EPS) containing mainly extracellular polysaccharides, quorum sensing, etc. The canker disease development depends on the virulent effector PthA4 secreted into citrus cells through the Type III protein secretion system (T3SS). The plant has two layers of defence responses to pathogen attack, i.e., the basal defence realized by pattern recognition receptors (PRRs) to detect microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) to trigger PAMP-triggered immunity (PTI) and the effector-triggered immunity (ETI) based on the highly specific interaction between products from pathogen avirulence genes (Avr) and products from host resistance genes (R). The XacFhaB, Lipopolysaccharides (LPSs) and flg22 are PAMPs identified in Xcc. The PRR FLS2 was identified in kumquat and mandarin genotypes. The rhizobacteria strains were found to effectively activate plant defence and significantly reduce symptom development in leaves challenged with Xcc. A few resistance genes, like Citrus NPR1 homolog 1 and Avr9/Cf-9 genes, were cloned. Breeding for citrus genotypes resistant to Xcc has continuously carried on for long time. The majority is achieved by genetic transformation, and among the reports, anti-bacterial peptide genes have been widely used, followed by the transferring resistant genes from other plants in citrus. The results, however, indicated only different levels of reduction of susceptibility to Xcc were gained. Further investigation of resistant mechanism and identification of resistant genes are indispensable for breeding of citrus genotypes really resistant to canker disease.


Citrus canker disease Xanthomonas citri subsp. citri Citrus genotypes Resistance Host-pathogen interaction 


  1. Abe VY, Benedetti CE (2016) Additive roles of PthAs in bacterial growth and pathogenicity associated with nucleotide polymorphisms in effector binding elements of citrus canker susceptibility genes. Mol Plant Pathol 17:1223–1236CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ade J, Innes RW (2007) Resistance to bacterial pathogens in plants. Encycl Life Sci. Scholar
  3. Al-Saadi A, Reddy J, Duan Y, Brunings A et al (2007) All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Mol Plant-Microbe Interact 20:934–943CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amaral AM, Carvalho SA, Silva LFC, Machado MA (2010) Reaction of genotypes of citrus species and varieties to Xanthomonas citri subsp. citri under greenhouse conditions. J Plant Pathol 92(2):519–524Google Scholar
  5. Barbosa-Mendes JM, Mourao Filho FAA, Bergamin Filho A, et al (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hort 122:109–115Google Scholar
  6. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Ann Rev Phytopathol 48(1):419–436CrossRefGoogle Scholar
  7. Bonas U, Van den Ackerveken G (1999) Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Curr Opin Microbiol 2:94–98CrossRefPubMedPubMedCentralGoogle Scholar
  8. Braeken K, Daniels R, Ndayizeye M, et al (2008) Quorum sensing in bacteria-plant interactions. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Soil biology, vol 15. Springer, Berlin, HeidelbergGoogle Scholar
  9. CABI (2018) Xanthomonas citri (citrus canker). Fallopia japonica. In: Invasive species compendium. Wallingford, UK, CAB International,
  10. Cardoso SC, Barbosa-Mendes JM, Boscariol-Camargo RL et al (2009) Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. citri. Plant Mol Biol Rep 28:185–192CrossRefGoogle Scholar
  11. Chen X, Barnaby JY, Sreedharan A et al (2013) Over-expression of the citrus gene CtNH1 confers resistance to bacterial canker disease. Physiol and Mol Plant Pathol. Scholar
  12. Civerolo EL (1985) Comparative characteristics of Xanthomonas campestris pv. citri variants. In: Abstracts on the genus Xanthomonas. Fallen Leaf Lake Conference, Fallen Leaf Lake, South Lake Tahoe, California, Sept 20–23, 24 pGoogle Scholar
  13. Dalio RJD, Magalhaes DM, Rodrigues CM et al (2017) PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann Bot. Scholar
  14. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833CrossRefPubMedPubMedCentralGoogle Scholar
  15. Das AK (2003) Citrus canker—a review. J Appl Hort 5(1):52–60Google Scholar
  16. da Silva ACR, Ferro JA, Reinach FC et al (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463CrossRefPubMedPubMedCentralGoogle Scholar
  17. de Carvalho SA, de Carvalho Nunes WM, Belasque J Jr et al (2015) Comparison of resistance to Asiatic citrus canker among different genotypes of Citrus in a long-term canker-resistance field screening experiment in Brazil. Plant Dis 99:207–218CrossRefPubMedPubMedCentralGoogle Scholar
  18. Deng ZN, Xu L, Li DZ et al (2010) Screening citrus genotypes for resistance to canker disease (Xanthomonas axonopodis pv. citri). Plant Breed 129:341–345CrossRefGoogle Scholar
  19. Dewdney MM, Graham JH (2016) Florida citrus pest management guide: Chap. 26 Citrus canker. Plant pathology department, UF/IFAS Extension, SP-43, p 182Google Scholar
  20. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548CrossRefPubMedPubMedCentralGoogle Scholar
  21. Duan Y, Castaneda A, Zhao G et al (1999) Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement, and cell death. Mol Plant-Microbe Interact 12:556–560CrossRefGoogle Scholar
  22. Dunger G, Arabolaza AL, Gotting N, et al (2005) Participation of Xanthomonas axonopodis pv. citri hrp cluster in citrus canker and non-host plant responses. Plant Pathol 54(6):781–788Google Scholar
  23. Dunger G, Relling VM, Tondo ML et al (2007) Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival. Arch Microbiol 188:127–135CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dye DW (1978) Genus IX. Xanthomonas Dowson 1939. In: Young JM, Dye DW, Bradbury JF, Panagopoulos CG, Robbs CF (eds) A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand J Agri Res 21(1), pp 153–177Google Scholar
  25. El-Yacoubi B, Brunings AM, Yuan Q et al (2007) In planta horizontal transfer of a major pathogenicity effector gene. Appl Environ Microbiol 73:1612–1621CrossRefPubMedPubMedCentralGoogle Scholar
  26. Febres VJ, Khalaf A, Gmitter FG Jr, Moore GA (2009) Production of disease resistance in citrus by understanding natural defense pathways and pathogen interactions. Tree For Sci Biotech 3:30–39Google Scholar
  27. Ficarra FA, Grandellis C, Galván EM, et al (2016) Xanthomonas citri ssp. citri requires the outer membrane porin OprB for maximal virulence and biofilm formation. Mol Plant Pathol 18(5):720–733Google Scholar
  28. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633CrossRefPubMedPubMedCentralGoogle Scholar
  29. Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947CrossRefPubMedPubMedCentralGoogle Scholar
  30. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296CrossRefGoogle Scholar
  31. Fu XZ, Chen CW, Wang Y et al (2011) Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration. BMC Plant Biol 11:55CrossRefPubMedPubMedCentralGoogle Scholar
  32. Furmana N, Kobayashi K, Zanek MC et al (2013) Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease. J Biotechnol. Scholar
  33. Gabriel DW, Kingsley MT, Hunter JE and Gottwald T (1989) Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) to species and reclassification of all X. campestris pv. citri strains. Int J Sys Bacteriol 39(1):14–22Google Scholar
  34. Garavaglia BS, Zimaro T, Abriata LA, et al. (2016) XacFhaB adhesin, an important Xanthomonas citri subsp. citri virulence factor, is recognized as a pathogen-associated molecular pattern. Mol Plant Pathol,
  35. Ge HJ, Li Y, Fu HY et al (2015) Production of sweet orange somaclones tolerant to citrus canker disease by in vitro mutagenesis with EMS. Plant Cell Tiss Organ Cult 123(1):29–38CrossRefGoogle Scholar
  36. Gonçalves-Zuliani AMO, Nanami DSY, Barbieri BR et al (2016) Evaluation of resistance to Asiatic citrus canker among selections of Pêra sweet orange (Citrus sinensis). Plant Dis 100:1994–2000CrossRefPubMedPubMedCentralGoogle Scholar
  37. Goto M, Hyodo H (1985) Role of extracellular polysaccharides of Xanthomonas campestris pv. citri in the early stage of infection. Ann Phytopath Soc Japan 51:22–31CrossRefGoogle Scholar
  38. Gotting N, Garavaglia BS, Garofalo CG, et al (2009) A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE 4:e4358
  39. Gottwald TR, Graham JH, Civerolo EL et al (1993) Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determined by leaf mesophyll susceptibility. Plant Dis 77(10):1004–1009CrossRefGoogle Scholar
  40. Gottwald TR, Graham JH, Schubert TS (2002) Citrus canker: the pathogen and its impact. Online. Plant Health Prog,
  41. Graham JH, Gottwald TR, Riley TD, Achor D (1992) Penetration through leaf stomata and strains of Xanthomonas campestris in citrus cultivars varying in susceptibility to bacterial diseases. Phytopathology 82:1319–1325CrossRefGoogle Scholar
  42. Guo Y, Sagaram US, Kim JS, Wang N (2010) Requirement of the galU gene for polysaccharide production by and pathogenicity and growth in planta of Xanthomonas citri subsp. citri. Appl Environ Microbiol 76:2234–2242CrossRefPubMedPubMedCentralGoogle Scholar
  43. Guo Y, Zhang Y, Li JL, Wang N (2012) Diffusible signal factor-mediated quorum sensing plays a central role in coordinating gene expression of Xanthomonas citri subsp. citri. Mol Plant-Microbe Interact 25(2):165–179Google Scholar
  44. Gururani MA, Venkatesh J, Upadhyaya CP et al (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65CrossRefGoogle Scholar
  45. Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes Annu. Rev Plant Physiol Plant Mol Biol 48:575–607CrossRefGoogle Scholar
  46. Hao GX, Stover E, Gupta G (2016) Overexpression of a modified plant Thionin enhances disease resistance to citrus canker and Huanglongbing (HLB). Front Plant Sci 7:1078. Scholar
  47. He Y, Chen S, Peng A et al (2011) Production and evaluation of transgenic sweet orange (Citrus sinensis Osbeck) containing bivalent antibacterial peptide genes (Shiva A and Cecropin B) via a novel Agrobacterium-mediated transformation of mature axillary buds. Sci Hort 128(2):99–107CrossRefGoogle Scholar
  48. Hu Y, Zhang J, Jia H et al (2014) Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA 111:521–529CrossRefGoogle Scholar
  49. IPPC (2009) Eradication of citrus canker from Australia. IPPC Official Pest Report, No. AU-18/1. Rome, Italy: FAO,
  50. IPPC (2018) Xanthomonas citri subsp citri (Citrus canker) in Northern Territory. IPPC Official Pest Report, No. GB-4/2. Rome, Italy: FAO,
  51. Jalan N, Kumar D, Yu F, et al (2013) Complete genome sequence of Xanthomonas citri subsp. citri strain AW12879, a restricted-host-range citrus canker-causing bacterium. Genome Announc 1(3):e00235–13.
  52. Jia H, Orbovic V, Jones JB, Wang N (2016) Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccDpthA4:dCsLOB1.3 infection. Plant Biotechnol J 14:1291–1301CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jia H, Zhang Y, Vladimir Orbovic V et al (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kanamori H, Tsuyumu S (1998) Comparison of nucleotide sequences of canker-forming and non-canker-forming pthA homologues in Xanthomonas campestris pv. citri. Ann Phytopathol Soc Jpn 64:462–470CrossRefGoogle Scholar
  57. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kobayashi AK, Vieira LGE, FilhoJC Bespalhok et al (2017) Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur J Plant Pathol. Scholar
  59. Kraiselburd I, Alet AI, Tondo ML, et al (2012) A LOV protein modulates the physiological attributes of Xanthomonas axonopodis pv. citri relevant for host plant colonization. PLoS ONE 7:e38226Google Scholar
  60. Lee S, Lee J, Lee DH, Lee YH (2008) Diversity of PthA gene of Xanthomonas strains causing citrus bacterial canker and its relationship with virulence. Plant Pathol J 24(3):357–360CrossRefGoogle Scholar
  61. Lee VT, Schneewind O (2001) Protein secretion and the pathogenesis of bacterial infections. Genes Dev 15:1725–1752CrossRefGoogle Scholar
  62. Li DL, Xiao X, Guo WW (2014a) Production of transgenic ‘Anliucheng’ sweet orange (Citrus sinensis Osbeck) with Xa21 gene for potential canker resistance. J Integr Agri 13(11):2370–2377CrossRefGoogle Scholar
  63. Li JY, Wang N (2011) The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol Plant Pathol 12(4):381–396Google Scholar
  64. Li N, Huang L, Liu LP et al (2014b) The relationship between PthA expression and the pathogenicity of Xanthomonas axonopodis pv. citri. Mol Biol Rep 41:967–975CrossRefGoogle Scholar
  65. Li WB, Song QJ, Brlabsky RH, Hartung JS (2007) Genetic diversity of citrus bacterial canker pathogens preserved in herbarium specimens. PNAS 104(47):18427–18432CrossRefPubMedPubMedCentralGoogle Scholar
  66. Li Z, Zou LF, Ye G et al (2014c) A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp citri. Mol Plant 7:912–915CrossRefPubMedPubMedCentralGoogle Scholar
  67. Liu B, Li JF, Ao Y et al (2012) Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24(8):3406–3419CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lowe D (2009) Current situation, management and economic impact of citrus canker in Florida. USDA, APHIS, PPQ, 1701 NW 66 Avenue, Plantation, FL, 33313, USAGoogle Scholar
  69. Malamud F, Conforte VP, Rigano LA et al (2012) hrpM is involved in glucan biosynthesis, biofilm formation and pathogenicity in Xanthomonas citri ssp. citri. Mol Plant Pathol 13:1010–1018CrossRefPubMedPubMedCentralGoogle Scholar
  70. Malamud F, Homem RA, Conforte VP et al (2013) Identification and characterization of biofilm formation-defective mutants of Xanthomonas citri subsp. citri. Microbiology 159:1911–1919CrossRefPubMedPubMedCentralGoogle Scholar
  71. Malamud F, Torres PS, Roeschlin R et al (2011) The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology 157:819–829CrossRefPubMedPubMedCentralGoogle Scholar
  72. Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15(4):349–357CrossRefPubMedPubMedCentralGoogle Scholar
  73. Murata MM, Omar AA, Mou ZL et al (2019) Novel plastid-nuclear genome combinations enhance resistance to citrus canker in cybrid grapefruit. Front Plant Sci. Scholar
  74. Muthamilarasan M, Prasad M (2013) Plant innate immunity: An updated insight into defense mechanism. J Biosci 38:433–449CrossRefPubMedPubMedCentralGoogle Scholar
  75. Omar AA, Murata MM, El-Shamy HA et al (2018) Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice. Trans Res 27(2):179–191CrossRefGoogle Scholar
  76. Palm ME, Civerolo EL (1994) Isolation, pathogenicity and partial host range of Alternaria limicola, causal agent of ‘Mancha Foliar de los Citricos’ in Mexico. Plant Dis 78:879–883CrossRefGoogle Scholar
  77. Peng AH, Chen SC, Lei TG (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1promoter in citrus. Plant Biotechnol J 15:1509–1519CrossRefPubMedPubMedCentralGoogle Scholar
  78. Peng AH, Xu LZ, He YR et al (2015) Efficient production of marker-free transgenic ‘Tarocco’ blood orange (Citrus sinensis Osbeck) with enhanced resistance to citrus canker using a Cre/loxP site-recombination system. Plant Cell Tiss Organ Cult 123:1–13CrossRefGoogle Scholar
  79. Pereira AL, Carazzolle MF, Abe VY et al (2014) Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. BMC Genom 15:157CrossRefGoogle Scholar
  80. Petrocelli S, Tondo ML, Daurelio LD, Orellano EG (2012) Modifications of Xanthomonas axonopodis pv. citri lipopolysaccharide affect the basal response and the virulence process during citrus canker. PLoS One 7Google Scholar
  81. Riera N, Wang H, Li Y et al (2018) Induced systemic resistance against citrus canker disease by rhizobacteria. Phytopathology 108(9):1038–1045CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rigano LA, Siciliano F, Enrique R et al (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact 20:1222–1230CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ryan RP, Vorholter F, Potnis N et al (2011) Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 9(5):344–355CrossRefPubMedPubMedCentralGoogle Scholar
  84. Saxena P, Joshi Y, Rawat K, Bisht R (2019) Biofilms: Architecture, resistance, quorum sensing and control mechanisms. Indian J Microbiol 59:3. Scholar
  85. Schaad NW, Postnikova E, Lacy G et al (2006) Emended classification of xanthomonad pathogens on citrus. Sys and Appl Microbiol 29:690–695CrossRefGoogle Scholar
  86. Sendín LN, Orce IG, Rocío, et al (2017) Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease. Plant Mol Biol 93(6):607–621Google Scholar
  87. Shi Q, Febres VJ, Jones JB, Moore GA (2015) Responsiveness of different citrus genotypes to the Xanthomonas citri ssp. citri-derived pathogen-associated molecular pattern (PAMP) flg22 correlates with resistance to citrus canker. Mol Plant Pathol 16:507–520CrossRefPubMedPubMedCentralGoogle Scholar
  88. Shi Q, Febres VJ, Jones JB, Moore GA (2016) A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to XanthomonasGoogle Scholar
  89. citri ssp. citri.: Hort Res 3, 16022,
  90. Siciliano F, Torres P, Sendin L, et al (2006). Analysis of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus limon. Electron J Biotechnol,
  91. Soprano AS, Abe VY, Smetana JH, Benedetti CE (2013) Citrus MAF1, a repressor of RNA Pol III, binds the Xanthomonas citri canker elicitor PthA4 and suppresses citrus canker development. Plant Physiol 163:232–242CrossRefPubMedPubMedCentralGoogle Scholar
  92. Stover E, Driggers R, Richardson ML et al (2014) Incidence and severity of Asiatic citrus canker on diverse citrus and citrus-related cermplasm in a Florida field planting. HortScience 49(1):4–9CrossRefGoogle Scholar
  93. Sun XA, Stall RE, Jones JB et al (2004) Detection and characterization of a new strain of citrus canker bacteria from Key/Mexican lime and alemow in South Florida. Plant Dis 88(11):1179–1188CrossRefPubMedPubMedCentralGoogle Scholar
  94. Swarup S, De Feyter R, Brlansky RH, Gabriel DW (1991) A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit canker like lesions on citrus. Phytopathology 81:802–809CrossRefGoogle Scholar
  95. Swarup S, Yang Y, Kingsley MT, Gabriel DW (1992) A Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol Plant-Microbe Interact 5:204–213CrossRefPubMedPubMedCentralGoogle Scholar
  96. Takahashi T, Doke N (1984) A role of extracellular polysaccharides of Xanthomonas campestris pv. citri in bacterial adhesion to citrus leaf tissues in preinfectious stage. Ann Phytopath Soc Japan 50:565–573CrossRefGoogle Scholar
  97. Vauterin L, Hoste B, Kersters K, Swings J (1995) Reclassification of Xanthomonas. Int J Sys and Evol Microbiol 45(3):472–489Google Scholar
  98. Vernière C, Hartung JS, Pruvost OP et al (1998) Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from southwest Asia. Eur J Plant Pathol 104:477–487CrossRefGoogle Scholar
  99. Viloria Z, Drouillard DL, Graham JH and Grosser JW (2004) Screening triploid hybrids of ‘Lakeland’ limequat for resistance to citrus canker. Plant Dis 1056–1060Google Scholar
  100. Willmann R, Lajunen HM, Erbs G et al (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. PNAS 108(49):19824–19829CrossRefGoogle Scholar
  101. Yan Q, Wang N (2011) The ColR/ColS two-component system plays multiple roles in the pathogenicity of the citrus canker pathogen Xanthomonas citri subsp. citri. J Bacteriol 193:1590–1599CrossRefPubMedPubMedCentralGoogle Scholar
  102. Yan Q, Wang N (2012) High-throughput screening and analysis of genes of Xanthomonas citri subsp. citri involved in citrus canker symptom development. Mol Plant-Microbe Interact 25:69–84CrossRefGoogle Scholar
  103. Yan Q, Hu X, Wang N (2012) The novel virulence-related gene nlxA in the lipopolysaccharide cluster of Xanthomonas citri ssp. citri is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance. Mol Plant Pathol 13:923–934CrossRefPubMedPubMedCentralGoogle Scholar
  104. Yang L, Hu C, Li N et al (2011) Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol Biol 75:11–23CrossRefGoogle Scholar
  105. Zimaro, T, Thomas, L, Marondedze, C, et al (2013) Insights into xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiol 13:186Google Scholar
  106. Zimaro, T., Thomas, L., Marondedze, C., et al. (2014) The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation. BMC Microbiol 14:96Google Scholar
  107. Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345–351CrossRefGoogle Scholar
  108. Zipfel C, Robatzek S, Navarro L et al (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.College of Horticulture, National Center for Citrus ImprovementHunan Agricultural UniversityChangshaChina

Personalised recommendations