Advertisement

Biotechnological Approaches for the Resistance to Citrus Diseases

  • Manjul Dutt
  • Choaa A. El-Mohtar
  • Nian WangEmail author
Chapter
  • 40 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Citrus is one of the top fruit crops worldwide. Citrus production faces many challenges such as diseases, insects, and abiotic stresses. Genetic improvement of citrus using conventional breeding is a lengthy, costly, and time-consuming process. Biotechnological approaches such as Agrobacterium-mediated transgenic expression, Citrus tristeza virus (CTV)-mediated transient expression and CRISPR-based genome editing have shown tremendous potential to improve citrus against different diseases. Here, we summarize the progress in generating disease-resistant/tolerant citrus plants via biotechnological approaches.

References

  1. Almeida WA, Mourao Filho FA, Pino LE, Boscariol RL, Rodriguez AP, Mendes BM (2003) Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Sci 164(2):203–211CrossRefGoogle Scholar
  2. Azevedo FA, Mourão Filho FAA, Mendes BMJ, Almeida WAB, Schinor EH, Pio R, Barbosa JM, Guidetti-Gonzalez S, Carrer H, Lam E (2006) Genetic transformation of Rangpur lime (Citrus limonia osbeck) with the bO (bacterio-opsin) genen and its initial evaluation for Phytophthora nicotianae resistance. Plant Mol Biol Report 24(2):185–196.  https://doi.org/10.1007/bf02914057CrossRefGoogle Scholar
  3. Barbosa-Mendes JM, Mourão Filho FDAA, Bergamin Filho A, Harakava R, Beer SV, Mendes BMJ (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hortic 122(1):109–115.  https://doi.org/10.1016/j.scienta.2009.04.001CrossRefGoogle Scholar
  4. Bar-Joseph M, Batuman O, Roistacher CN (2010) The history of Citrus tristeza virus-revisited. In: Karasev AV, Hilf ME (eds) Citrus tristeza virus complex and tristeza diseases. APS Press, St. Paul Minnesota, pp 3–26Google Scholar
  5. Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54(2):234–244.  https://doi.org/10.1016/j.molcel.2014.03.011CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712.  https://doi.org/10.1126/science.1138140CrossRefPubMedGoogle Scholar
  7. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52.  https://doi.org/10.1016/j.biotechadv.2014.12.006CrossRefPubMedGoogle Scholar
  8. Boscariol RL, Monteiro M, Takahashi EK, Chabregas SM, Vieira MLC, Vieira LG, Pereira LF, de AA Mourão Filho F, Cardoso SC, Christiano RS (2006) Attacin A gene from Tricloplusia ni reduces susceptibility to xanthomonas axonopodis pv. citri in Transgenic Citrus sinensis Hamlin. J Am Soc Hortic Sci 131(4):530–536CrossRefGoogle Scholar
  9. Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4(3):141–157CrossRefGoogle Scholar
  10. Cardoso SC, Barbosa-Mendes JM, Boscariol-Camargo RL, Christiano RSC, Filho AB, Vieira MLC, Mendes BMJ, Mourão Filho FDAA (2010) Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to xanthomonas citri subsp. citri. Plant Mol Biol Report 28(2):185–192.  https://doi.org/10.1007/s11105-009-0141-0CrossRefGoogle Scholar
  11. Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Pena L (1998) Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Res 7(1):51–59CrossRefGoogle Scholar
  12. Cervera M, Ortega C, Navarro A, Navarro L, Pena L (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75(1):26–30CrossRefGoogle Scholar
  13. Cevik B, Lee RF, Niblett CL (2006) Genetic transformation of Citrus paradisi with antisense and untranslatable RNA-dependent RNA polymerase genes of Citrus tristeza closterovirus. Turk J Agric For 30(3):173–182Google Scholar
  14. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141.  https://doi.org/10.1101/gr.162339.113CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  https://doi.org/10.1126/science.1231143CrossRefPubMedPubMedCentralGoogle Scholar
  16. da Graça JV, Douhan GW, Halbert SE, Keremane ML, Lee RF, Vidalakis G, Zhao H (2016) Huanglongbing: an overview of a complex pathosystem ravaging the world’s citrus. J Integr Plant Biol 58(4):373–387CrossRefGoogle Scholar
  17. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607.  https://doi.org/10.1038/nature09886CrossRefPubMedPubMedCentralGoogle Scholar
  18. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190(4):1390–1400.  https://doi.org/10.1128/JB.01412-07CrossRefPubMedGoogle Scholar
  19. Dominguez A, Guerri J, Cambra M, Navarro L, Moreno P, Pena L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19:427CrossRefGoogle Scholar
  20. Dutt M, Grosser JW (2009) Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell, Tissue Organ Cult (PCTOC) 98(3):331–340.  https://doi.org/10.1007/s11240-009-9567-1CrossRefGoogle Scholar
  21. Dutt M, Grosser JW (2010) An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus. Plant Cell Rep 29(11):1251–1260.  https://doi.org/10.1007/s00299-010-0910-0CrossRefPubMedGoogle Scholar
  22. Dutt M, Omar A, Orbovic V, Barthe G, Grosser J (2008) Progress towards incorporation of antimicrobial peptides for disease resistance in citrus. In: 11th International citrus congress. Wuhan, Hubei Province, ChinaGoogle Scholar
  23. Dutt M, Barthe G, Irey M, Grosser JW (2015) Transgenic Citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus Greening). PLoS ONE 10(9):e0137134.  https://doi.org/10.1371/journal.pone.0137134CrossRefPubMedPubMedCentralGoogle Scholar
  24. El Mohtar CA (2011) Exploring citrus tristeza virus-based limits for foreign gene expression. University of Florida DissertationGoogle Scholar
  25. El-Mohtar C, Dawson WO (2014) Exploring the limits of vector construction based on Citrus tristeza virus. Virology 448:274–283CrossRefGoogle Scholar
  26. Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Peña L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breeding 7(2):175–185.  https://doi.org/10.1023/a:1011358005054CrossRefGoogle Scholar
  27. Febres V, Niblett C, Lee R, Moore G (2003) Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Rep 21(5):421–428.  https://doi.org/10.1007/s00299-002-0528-yCrossRefPubMedGoogle Scholar
  28. Fleming GH, Olivares-Fuster O, Del Bosco SF, Grosser JW (2000) An alternative method for the genetic transformation of sweet orange. Vitro Cell Dev Biol Plant 36:450CrossRefGoogle Scholar
  29. Folimonov AS, Folimonova SY, Bar-Joseph M, Dawson WO (2007) A stable RNA virus-based vector for citrus trees. Virology 368:205–216CrossRefGoogle Scholar
  30. Fu XZ, Chen CW, Wang Y, Liu JH, Moriguchi T (2011a) Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H(2)O(2)production and transcriptional alteration. BMC Plant Biol 11:55.  https://doi.org/10.1186/1471-2229-11-55CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fu XZ, Khan EU, Hu SS, Fan QJ, Liu JH (2011b) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot 74:106–113.  https://doi.org/10.1016/j.envexpbot.2011.05.006CrossRefGoogle Scholar
  32. Furman N, Kobayashi K, Zanek MC, Calcagno J, Garcia ML, Mentaberry A (2013) Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease. J Biotechnol 167(4):412–419CrossRefGoogle Scholar
  33. Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56(4):343–349.  https://doi.org/10.1111/jipb.12152CrossRefPubMedGoogle Scholar
  34. Garneau JE, Dupuis M, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71.  https://doi.org/10.1038/nature09523CrossRefPubMedGoogle Scholar
  35. Ghorbel R, Domínguez A, Navarro L, Peña L (2000) High efficiency genetic transformation of sour orange (Citrus aurantium) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiol 20(17):1183–1189CrossRefGoogle Scholar
  36. Gowda S, Satyanarayana T, Ayllon MA, Albiach-Marti MR, Mawassi M, Rabindran S, Garnsey SM, Dawson WO (2001) Characterization of the cisacting elements controlling subgenomic mRNAs of citrus tristeza virus: production of positive- and negative-stranded 3’-terminal and positive-stranded 5’-terminal RNAs. Virology 286(1):134–151CrossRefGoogle Scholar
  37. Guo W, Duan Y, Olivares-Fuster O, Wu Z, Arias CR, Burns JK, Grosser JW (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep 24(8):482–486.  https://doi.org/10.1007/s00299-005-0952-xCrossRefPubMedGoogle Scholar
  38. Gutierrez E, Luth D, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16:745CrossRefGoogle Scholar
  39. Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S (2014) Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J Biotechnol 176:42–49CrossRefGoogle Scholar
  40. Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4(6):226–231.  https://doi.org/10.1016/S1360-1385(99)01412-0CrossRefPubMedGoogle Scholar
  41. Hao G, Stover E, Gupta G (2016) Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB). Front Plant Sci 7:1078CrossRefGoogle Scholar
  42. Hao G, Zhang S, Stover E (2017) Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus. PLoS ONE 12(10):e0186810.  https://doi.org/10.1371/journal.pone.0186810CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78(5):742–752.  https://doi.org/10.1111/tpj.12413CrossRefPubMedGoogle Scholar
  44. He Y, Chen S, Peng A, Zou X, Xu L, Lei T, Liu X, Yao L (2011) Production and evaluation of transgenic sweet orange (Citrus sinensis Osbeck) containing bivalent antibacterial peptide genes (Shiva A and Cecropin B) via a novel Agrobacterium-mediated transformation of mature axillary buds. Sci Hortic 128(2):99–107.  https://doi.org/10.1016/j.scienta.2011.01.002CrossRefGoogle Scholar
  45. Hilf ME, Karasev AV, Pappu HR, Gumpf DJ, Niblett CL, Garnsey SM (1995) Characterization of citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–582CrossRefGoogle Scholar
  46. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 110(39):15644–15649.  https://doi.org/10.1073/pnas.1313587110CrossRefPubMedGoogle Scholar
  47. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832.  https://doi.org/10.1038/nbt.2647CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, Yang B, White FF, Wang N, Jones JB (2014) Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA 111(4):E521–E529.  https://doi.org/10.1073/pnas.1313271111CrossRefPubMedGoogle Scholar
  49. Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G (2015) Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241(1):271–284.  https://doi.org/10.1007/s00425-014-2180-5CrossRefPubMedGoogle Scholar
  50. Jagoueix S, Bové JM, Garnier M (1996) PCR detection of the two «Candidatus» liberobacter species associated with greening disease of citrus. Mol Cell Probes 10(1):43–50CrossRefGoogle Scholar
  51. Jia H, Wang N (2014a) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9(4):e93806.  https://doi.org/10.1371/journal.pone.0093806CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jia H, Wang N (2014b) Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep 33(12):1993–2001.  https://doi.org/10.1007/s00299-014-1673-9CrossRefPubMedGoogle Scholar
  53. Jia H, Orbovic V, Jones JB, Wang N (2016a) Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol J 14(5):1291–1301.  https://doi.org/10.1111/pbi.12495CrossRefPubMedGoogle Scholar
  54. Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2016b) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12677CrossRefGoogle Scholar
  55. Jia H, Xu J, Orbović V, Zhang Y, Wang N (2017a) Editing citrus genome via SaCas9/sgRNA system. Front Plant Sci 8:2135.  https://doi.org/10.3389/fpls.2017.02135CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017b) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15(7):817–823.  https://doi.org/10.1111/pbi.12677CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821.  https://doi.org/10.1126/science.1225829CrossRefPubMedPubMedCentralGoogle Scholar
  58. Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Niblett CL, Cline K, Gumpf DJ, Lee RF, Garnsey SM, Lewandowski DJ, Dawson WO (1995) Complete sequence of the citrus tristeza virus RNA genome. Virology 208:511–520CrossRefGoogle Scholar
  59. Kim H, Kim ST, Ryu J, Choi MK, Kweon J, Kang BC, Ahn HM, Bae S, Kim J, Kim JS, Kim SG (2016) A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. J Integr Plant Biol 58(8):705–712.  https://doi.org/10.1111/jipb.12474CrossRefPubMedGoogle Scholar
  60. Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK (2015a) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33(12):1293–1298.  https://doi.org/10.1038/nbt.3404CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK (2015b) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485.  https://doi.org/10.1038/nature14592CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kobayashi AK, Vieira LGE, Bespalhok Filho JC, Leite RP, Pereira LFP, Molinari HBC, Marques VV (2017) Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur J Plant Pathol 149(4):865–873CrossRefGoogle Scholar
  63. Koo T, Lee J, Kim JS (2015) Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cells 38(6):475–481.  https://doi.org/10.14348/molcells.2015.0103CrossRefPubMedPubMedCentralGoogle Scholar
  64. Koonin EV, Wolf YI (2015) Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus-host coevolution. Mol BioSyst 11(1):20–27.  https://doi.org/10.1039/c4mb00438hCrossRefPubMedGoogle Scholar
  65. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78.  https://doi.org/10.1016/j.mib.2017.05.008CrossRefPubMedPubMedCentralGoogle Scholar
  66. LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish V, Jacob Y (2017) Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J.  https://doi.org/10.1111/tpj.13782CrossRefGoogle Scholar
  67. Li D, Shi W, Deng X (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21(2):153–156.  https://doi.org/10.1007/s00299-002-0492-6CrossRefGoogle Scholar
  68. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261.  https://doi.org/10.1038/ncomms14261CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lu R, Folimonov A, Shintaku M, Li WX, Falk BW, Dawson WO, Ding SW (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci USA 101:15742–15747CrossRefGoogle Scholar
  70. Luth D, Moore G (1999) Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell, Tissue Organ Cult 57(3):219–222.  https://doi.org/10.1023/A:1006387900496CrossRefGoogle Scholar
  71. Makarova KS, Koonin EV (2015) Annotation and classification of CRISPR-Cas systems. Methods Mol Biol 1311:47–75.  https://doi.org/10.1007/978-1-4939-2687-9_4CrossRefPubMedPubMedCentralGoogle Scholar
  72. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736.  https://doi.org/10.1038/nrmicro3569CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mao Y, Zhang Z, Feng Z, Wei P, Zhang H, Botella JR, Zhu JK (2016) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14(2):519–532.  https://doi.org/10.1111/pbi.12468CrossRefPubMedGoogle Scholar
  74. Marraffini LA (2013) CRISPR-Cas immunity against phages: its effects on the evolution and survival of bacterial pathogens. PLoS Pathog 9(12):e1003765.  https://doi.org/10.1371/journal.ppat.1003765CrossRefPubMedPubMedCentralGoogle Scholar
  75. Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526(7571):55–61.  https://doi.org/10.1038/nature15386CrossRefPubMedGoogle Scholar
  76. Mendes BMJ, Cardoso SC, Boscariol-Camargo RL, Cruz RB, Filho FAAM, Filho AB (2010) Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathol 59(1):68–75.  https://doi.org/10.1111/j.1365-3059.2009.02148.xCrossRefGoogle Scholar
  77. Mirkov TE, Gonzalez-Ramos J (2013) Pathogen resistant citrus compositions, organisms, systems, and methods. Google PatentsGoogle Scholar
  78. Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Júnior RPL, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167(6):1375–1381.  https://doi.org/10.1016/j.plantsci.2004.07.007CrossRefGoogle Scholar
  79. Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238PubMedGoogle Scholar
  80. Niedz RP, McKendree WL, Shatters RG (2003) Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis (l.) osbeck) and regeneration of transformed plants. In Vitr Cell Dev Biol—Plant 39(6):586–594.  https://doi.org/10.1079/ivp2003463CrossRefGoogle Scholar
  81. Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 54(4):698–710.  https://doi.org/10.1016/j.molcel.2014.04.022CrossRefPubMedPubMedCentralGoogle Scholar
  82. Olivares-Fuster O, Pena L, Duran-Vila N, Navarro L (2002) Green fluorescent protein as a visual marker in somatic hybridization. Ann Bot 89(4):491–497CrossRefGoogle Scholar
  83. Omar AA, Song WY, Grosser JW (2007) Introduction of Xa21, a Xanthomonas-resistance gene from rice, into ‘Hamlin’ sweet orange [Citrus sinensis (L.) Osbeck] using protoplast-GFP co-transformation or single plasmid transformation. J Hortic Sci Biotechnol 82(6):914–923.  https://doi.org/10.1080/14620316.2007.11512326CrossRefGoogle Scholar
  84. Omar AA, Murata MM, El-Shamy HA, Graham JH, Grosser JW (2018) Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice. Transgenic Res 27(2):179–191.  https://doi.org/10.1007/s11248-018-0065-2CrossRefPubMedGoogle Scholar
  85. Omura M, Shimada T (2016) Citrus breeding, genetics and genomics in Japan. Breed Sci 66(1):3–17.  https://doi.org/10.1270/jsbbs.66.3CrossRefPubMedPubMedCentralGoogle Scholar
  86. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12733CrossRefGoogle Scholar
  87. Peremyslov VV, Andreev IA, Prokhnevsky AI, Duncan GH, Taliansky ME, Dolja VV (2004) Complex molecular architecture of beet yellows virus particles. Proc Natl Acad Sci USA 101:5030–5035CrossRefGoogle Scholar
  88. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-Guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389.  https://doi.org/10.1016/j.cell.2013.08.021CrossRefPubMedPubMedCentralGoogle Scholar
  89. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191.  https://doi.org/10.1038/nature14299CrossRefPubMedPubMedCentralGoogle Scholar
  90. Rodriguez A, San Andrés V, Cervera M, Redondo A, Alquézar B, Shimada T, Gadea J, Rodrigo MJ, Zacarías L, Palou L, López MM, Castañera P, Peña L (2011) Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol 156(2):793–802.  https://doi.org/10.1104/pp.111.176545CrossRefPubMedPubMedCentralGoogle Scholar
  91. Satyanarayana T, Gowda S, Mawassi M, Albiach-Marti MR, Ayllón MA, Robertson C, Garnsey SM, Dawson WO (2000) Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–265CrossRefGoogle Scholar
  92. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60(3):385–397.  https://doi.org/10.1016/j.molcel.2015.10.008CrossRefPubMedPubMedCentralGoogle Scholar
  93. Stover E, Stange RR, McCollum TG, Jaynes J, Irey M, Mirkov E (2013) Screening antimicrobial peptides in vitro for use in developing transgenic citrus resistant to Huanglongbing and citrus canker. J Am Soc Hortic Sci 138(2):142–148CrossRefGoogle Scholar
  94. Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274.  https://doi.org/10.1038/ncomms13274CrossRefPubMedPubMedCentralGoogle Scholar
  95. Takeuchi N, Wolf YI, Makarova KS, Koonin EV (2012) Nature and intensity of selection pressure on CRISPR-associated genes. J Bacteriol 194(5):1216–1225.  https://doi.org/10.1128/JB.06521-11CrossRefPubMedPubMedCentralGoogle Scholar
  96. Tatineni S, Robertson CJ, Garnsey SM, Bar-Joseph M, Gowda S, Dawson WO (2008) Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 376:297–307CrossRefGoogle Scholar
  97. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576.  https://doi.org/10.1038/nbt.2908CrossRefPubMedPubMedCentralGoogle Scholar
  98. van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34(8):401–407.  https://doi.org/10.1016/j.tibs.2009.05.002CrossRefPubMedGoogle Scholar
  99. Wang N, Pierson EA, Setubal JC, Xu J, Levy JG, Zhang Y, Li J, Rangel LT Jr (2017) The Candidatus Liberibacter–Host interface: insights into pathogenesis mechanisms and disease control. Annu Rev Phytopathol 55(1):451–482.  https://doi.org/10.1146/annurev-phyto-080516-035513CrossRefGoogle Scholar
  100. Wei Y, Qiu Y, Chen Y, Liu G, Zhang Y, Xu L, Ding Q (2017) CRISPR/Cas9 with single guide RNA expression driven by small tRNA promoters showed reduced editing efficiency compared to a U6 promoter. RNA 23(1):1–5.  https://doi.org/10.1261/rna.057596.116CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338.  https://doi.org/10.1038/nature10886CrossRefPubMedGoogle Scholar
  102. Wong WS, Li GG, Ning W, Xu ZF, Hsiao WLW, Zhang LY, Li N (2001) Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Sci 161(5):969–977.  https://doi.org/10.1016/S0168-9452(01)00505-2CrossRefGoogle Scholar
  103. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164.  https://doi.org/10.1038/nbt.3389CrossRefPubMedGoogle Scholar
  104. Wu H, Acanda Y, Jia H, Wang N, Zale J (2016) Biolistic transformation of Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.). Plant Cell Rep 35(9):1955–1962.  https://doi.org/10.1007/s00299-016-2010-2CrossRefPubMedGoogle Scholar
  105. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112(11):3570–3575.  https://doi.org/10.1073/pnas.1420294112CrossRefPubMedGoogle Scholar
  106. Yan L, Wei S, Wu Y, Hu R, Li H, Yang W, Xie Q (2015) High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8(12):1820–1823.  https://doi.org/10.1016/j.molp.2015.10.004CrossRefPubMedGoogle Scholar
  107. Yang ZN, Ingelbrecht IL, Louzada E, Skaria M, Mirkov TE (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Rep 19(12):1203–1211.  https://doi.org/10.1007/s002990000257CrossRefPubMedGoogle Scholar
  108. Zanek MC, Reyes CA, Cervera M, Peña EJ, Velázquez K, Costa N, Plata MI, Grau O, Peña L, García ML (2008) Genetic transformation of sweet orange with the coat protein gene of Citrus psorosis virus and evaluation of resistance against the virus. Plant Cell Rep 27(1):57–66.  https://doi.org/10.1007/s00299-007-0422-8CrossRefPubMedGoogle Scholar
  109. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771.  https://doi.org/10.1016/j.cell.2015.09.038CrossRefPubMedPubMedCentralGoogle Scholar
  110. Zhang X, Francis MI, Dawson WO, Graham JH, Orbović V, Triplett EW, Mou Z (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 128(1):91–100.  https://doi.org/10.1007/s10658-010-9633-xCrossRefGoogle Scholar
  111. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617.  https://doi.org/10.1038/ncomms12617CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zhang F, LeBlanc C, Irish VF, Jacob Y (2017) Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Rep.  https://doi.org/10.1007/s00299-017-2202-4CrossRefGoogle Scholar
  113. Zou X, Jiang X, Xu L, Lei T, Peng A, He Y, Yao L, Chen S (2017) Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Mol Biol 93(4–5):341–353CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Citrus Research and Education Center, Institute of Food and Agricultural Sciences,University of FloridaLake AlfredUSA
  2. 2.Department of Microbiology and Cell ScienceCitrus Research and Education Center, Institute of Food and Agricultural Sciences, University of FloridaLake AlfredUSA

Personalised recommendations