Advertisement

Spacetimes as Topological Spaces, and the Need to Take Methods of General Topology More Seriously

  • Kyriakos Papadopoulos
  • Fabio Scardigli
Chapter

Abstract

Why is the manifold topology in a spacetime taken for granted? Why do we prefer to use Riemann open balls as basic-open sets, while there also exists a Lorentz metric? Which topology is a best candidate for a spacetime: a topology sufficient for the description of spacetime singularities or a topology which incorporates the causal structure? Or both? Is it more preferable to consider a topology with as many physical properties as possible, whose description might be complicated and counterintuitive, or a topology which can be described via a countable basis but misses some important information? These are just a few from the questions that we ask in this chapter, which serves as a critical review of the terrain and contains a survey with remarks, corrections and open questions.

Keywords

Zeeman-Göbel topologies Topologising a spacetime Spacetime singularities Causal topologies Manifold topology 

Notes

Acknowledgements

The co-author K.P. wishes to thank Robert Low for his remarks on the Interval Topology in [28], some of which we incorporate in the introductory section here, as well as Spiros Cotsakis for introducing him [38] and related literature. He also wishes to thank Nikolaos Kalogeropoulos for discussions on quantum theory of gravity and B.K. Papadopoulos for having taught him lattice topologies. Last, the authors would like to thank Ljubisa Kocinac and Hemen Dutta for their important remarks towards the improvement of the text.

References

  1. 1.
    R.P. Agarwal, C. Cuevas, H. Soto, M. El-Gebeily, Asymptotic periodicity for some evolution equations in Banach spaces. Nonlinear Anal. Theory Methods Appl. 74(5), 1769–1798 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    I. Antoniadis, S. Cotsakis, The large-scale structure of the ambient boundary, to appear in MG14 Proceedings; arXiv:1512.0916Google Scholar
  3. 3.
    I. Antoniadis, S. Cotsakis, Ambient cosmology and spacetime singularities. Eur. Phys. J. C. 75(35), 1–12 (2015)Google Scholar
  4. 4.
    I. Antoniadis, S. Cotsakis, Topology of the ambient boundary and the convergence of causal curves. Mod. Phys. Lett. A 30(30), 1550161 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Antoniadis, S. Cotsakis, K. Papadopoulos, The causal order on the ambient boundary. Mod. Phys. Lett. A 31(20), 1650122 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    P.S. Aspinwall, B.R.Greene, D.R. Morrison, Multiple mirror manifolds and topology change in string theory. Phys. Lett. B 303, 249–259 (1993) B.R. Greene, K. Schalm, G. Shiu, Dynamical topology change in M theory. J. Math. Phys. 42, 3171–3187 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Cotsakis, Cosmological Singularities, Springer LNP Proceedings of the First Aegean Summer School of Cosmology, Samos, September 21–29 (2001)Google Scholar
  8. 8.
    S. Cotsakis, Talking about Singularities, The Eleventh Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity. Gravitation and Relativistic Field Theories (In 3 Volumes), 758–777 (2008)Google Scholar
  9. 9.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)zbMATHCrossRefGoogle Scholar
  10. 10.
    A. Einstein, N. Rosen, The particle problem in the general theory of relativity. Phys. Rev. 48, 73 (1935)zbMATHCrossRefGoogle Scholar
  11. 11.
    S. Ferry, K. Mischaikow, V. Nanda, Reconstructing functions from random variables. J. Comput. Dynam. 1(2), 233–248 (2014)zbMATHCrossRefGoogle Scholar
  12. 12.
    G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, A Compendium of Continuous Lattices (Springer, Berlin, 1980)zbMATHCrossRefGoogle Scholar
  13. 13.
    Gobel, Zeeman topologies on space-times of general relativity theory. Comm. Math. Phys. 46, 289–307 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    C. Good, K. Papadopoulos, A topological characterization of ordinals: van Dalen and Wattel revisited. Topology Appl. 159, 1565–1572 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    S.W. Hawking, A.R. King, P.J. McCarthy, A new topology for curved space time which incorporates the causal, differential, and conformal structures. J. Math. Phy. 17(2), 174–181 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. Heathcote, Zeeman Göbel topologies. Br. J. Phil. Sci. 39, 247–261 (1988)MathSciNetCrossRefGoogle Scholar
  17. 17.
    P. Jizba, H. Kleinert, F. Scardigli, Uncertainty relation on world crystal and its applications to micro black holes. Phys. Rev. D 81, 084030 (2010), [arXiv:0912.2253 [hep-th]]Google Scholar
  18. 18.
    E.H. Kronheimer, R. Penrose, On the structure of causal spaces. Proc. Camb. Phil. Soc. 63, 481 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    R.J. Low, Spaces of paths and the path topology. J. Math. Phys. 57, 092503 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J. Maldacena, L. Susskind, Cool horizons for entangled black holes. Fortsch. Phys. 61, 781 (2013), [arXiv:1306.0533 [hep-th]]. L. Susskind, Dear Qubitzers, GR=QM, arXiv:1708.03040 [hep-th].MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    E. Minguzzi, Limit curve theorems in Lorentzian geometry. J. Math. Phys. 49, 092501 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    New Scientist Cover Story, Entangled Universe, 7 November 2015.Google Scholar
  23. 23.
    K. Papadopoulos, On the orderability problem and the interval topology, Chapter in the Volume “Topics in Mathematical Analysis and Applications”, in Optimization and Its Applications Springer Series, ed. by T. Rassias, L. Toth (Springer, Berlin, 2014)Google Scholar
  24. 24.
    K. Papadopoulos, On properties of nests: some answers and questions. Questions Answers Gen. Topology 33(2), 71–91 (2015)MathSciNetzbMATHGoogle Scholar
  25. 25.
    K. Papadopoulos, Nests, and their role in the orderability problem. Mathematical Analysis, Approximation Theory and Their Applications ed. by Th. M. Rassias, V. Gupta (Springer, Berlin, 2016), pp. 517–533zbMATHCrossRefGoogle Scholar
  26. 26.
    K. Papadopoulos, On the possibility of singularities on the ambient boundary. Int. J. Geom. Meth. Mod. Phys. 14(10), 1750184 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    K. Papadopoulos, S. Acharjee, B.K. Papadopoulos, The order on the light cone and its induced topology. Int. J. Geom. Meth. Mod. Phys. 15(05), 1850069 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    K. Papadopoulos, B.K. Papadopoulos, Spacetime Singularities vs. Topologies of Zeeman-Göbel Class, arXiv: 1712.03270Google Scholar
  29. 29.
    K. Papadopoulos, B.K. Papadopoulos, On two topologies that were suggested by Zeeman. Math. Methods Appl. Sci. 41, 7742–7747 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    R. Penrose, Techniques of Differential Topology in Relativity, CBMS-NSF Regional Conference Series in Applied Mathematics (1972)Google Scholar
  32. 32.
    R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Vintage Books, 2007)Google Scholar
  33. 33.
    F. Scardigli, Black hole entropy: a space-time foam approach. Class. Quant. Grav. 14, 1781 (1997) [gr-qc/9706030]MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    J.M.M. Senovilla, D. Garfinkle, The 1965 Penrose singularity theorem. Class. Quant. Grav. 32, 12 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    M. Van Raamsdonk, Building up spacetime with quantum entanglement. Gen. Rel. Grav. 42, 2323 (2010) [Int. J. Mod. Phys. D 19 (2010) 2429] [arXiv:1005.3035 [hep-th]]Google Scholar
  36. 36.
    J.A. Wheeler, Geons. Phys. Rev. 97, 511 (1955)CrossRefGoogle Scholar
  37. 37.
    E.C. Zeeman, Causality implies the Lorentz group. J. Math. Phys. 5, 490–493 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    E.C. Zeeman, The topology of Minkowski space. Topology 6, 161–170 (1967)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kyriakos Papadopoulos
    • 1
  • Fabio Scardigli
    • 2
    • 3
  1. 1.Department of MathematicsKuwait UniversitySafatKuwait
  2. 2.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly
  3. 3.Institute-Lorentz for Theoretical PhysicsLeiden UniversityLeidenThe Netherlands

Personalised recommendations