Advertisement

On Approximate Solutions of Linear and Nonlinear Singular Integral Equations

  • Nizami Mustafa
  • Veysel Nezir
Chapter

Abstract

Singular integral equation theory has broad applications to theoretical and practical investigations in mathematics, mathematical physics, hydrodynamic and elasticity theory. This fact motivated many researchers to work on this field and their studies have showed that finding approximate solutions of linear and nonlinear singular integral equations in Banach spaces provides many applications even if their definite solutions cannot be found or if there are difficulties in finding them. Thus, the central theme of the recent studies is to develop effective approximate solution methods for the linear and nonlinear singular integral equations in Banach spaces. This chapter has been devoted to investigating approximate solutions of linear and nonlinear singular integral equations in Banach spaces using technical methods such as collocation method, quadrature method, Newton–Kantorovich method, monotonic operators method, and fixed point theory depending on the type of the equations. We provide sufficient conditions for the convergence of these methods and investigate some properties.

References

  1. 1.
    F.A. Abdullayev, E.H. Khalilov, Ground of the collocation method for a class of boundary integral equations. Differ. Equ. 49(1), 82–86 (2004)Google Scholar
  2. 2.
    V.M. Alexandrov, E.V. Kovalenko, Problems with Mixed Boundary Conditions in Continuum Mechanics (Nauka, Moscow 1986)Google Scholar
  3. 3.
    V.M. Alexandrov, I.I. Kudish, Asymptotic methods in Criffits problem. Appl. Math. Mech. 53, 665–671 (1989)MathSciNetCrossRefGoogle Scholar
  4. 4.
    V.M. Alexandrov, S.M. Mkitaryan, Contact Problems for Bodies with Thin Coverings and Interlayers (Nauka, Moscow, 1983)Google Scholar
  5. 5.
    S.M. Amer, On solution of non-linear singular integral equations with shift in generalized Holder space. Chaos, Solutions Fractals 12, 1323–1334 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    K.E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind (SIAM, Philadelphia, 1976)zbMATHGoogle Scholar
  7. 7.
    A.A. Badr, Integro-differential equations with Cauchy kernel. J. Comput. Appl. Math. 134, 191199 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S.M. Belotserkhovskii, I. K. Lifanov, Numerical Solutions of Singular Integral Equations (Nauka, Moscow, 1985)Google Scholar
  9. 9.
    L. Bers, L. Nirenberg, On a representation for linear elliptic systems with discontinuous coefficients and its application. Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali (Trieste, 1954)Google Scholar
  10. 10.
    B.V. Bojarskii, Quasiconformal mappings and general structural properties of system of non-linear elliptic in the sense of Lavrentev. Sympos. Math. 18, 485–499 (1976)MathSciNetGoogle Scholar
  11. 11.
    Y.G. Borisovich, V.G. Zvyagin, Non-linear Fredholm maps and the Leray-Schauder theory. Russ. Math. Surv. 32(4), 1–54 (1977)zbMATHCrossRefGoogle Scholar
  12. 12.
    D.L. Colton, R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York 1983)zbMATHGoogle Scholar
  13. 13.
    I.K. Daugavet, Introduction to Approximation Theory of Functions (Leningrad University, Leningrad, 1977) (in Russian)zbMATHGoogle Scholar
  14. 14.
    G. David, Courbes corde-are et espaces de Hardy generalizes. Ann. Inst. Fourier 32(3), 227–239 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    R. Duduchava, An application of singular integral equations to some problems of elasticity. Integr. Equ. Oper. Theory 5(1), 475–489 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    R. Duduchava, S. Prösdorf, On the approximation of singular integral equations by equations with smooth kernels. Integr. Equ. Oper. Theory 21(2), 224–237 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    L.R. Duduchava, D. Mitrea, M. Mitrea, Differential operators and boundary value problems on hypersurfaces. Math. Nachr. 279(9–10), 996–1023 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    J. Frankel, A. Galerkin, Solution to a regularized Cauchy singular integro-differential equation. Q. Appl. Math. L11(2), 245–258 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    B.G. Gabdulkhaev, Finite approximations of singular integrals, direct solution methods of singular integral and integro-differential equations. Itogi Nauki i Tekniki, VINITI AN SSSR, Math. Anal. 18, 25–31 (1980)Google Scholar
  20. 20.
    B.G. Gabdulkhaev, Optimal Approximation to Linear Problem (Kazan University Publications, Kazan, 1980)Google Scholar
  21. 21.
    B.G. Gabdulkhaev, V.E. Gorlov, On the optimal algorithm of the approximate solutions of singular integral equations. Izv. Vuzov Math. 11, 13–31 (1976)MathSciNetGoogle Scholar
  22. 22.
    F.D. Gakhov, Boundary Value Problems, English Edition (Pergamon Press, Oxford, 1966)Google Scholar
  23. 23.
    C.D. Green, Integral Equation Methods (Thomas Nelson, New York, 1969)zbMATHGoogle Scholar
  24. 24.
    A.I. Gusseinov, K.S. Mukhtarov, Introduction to the Theory of Nonlinear Singular Integral Equations (Nauka, Moscow, 1980) (in Russian)Google Scholar
  25. 25.
    H. Hochstadt, Integral Equations (Wiley Interscience, New York, 1973)zbMATHGoogle Scholar
  26. 26.
    V.V. Ivanov, The Theory of Approximate Methods and its Application to the Numerical Solution of Singular Integral Equations (Naukova Dumka, Kiev, 1968)Google Scholar
  27. 27.
    D.S. Jones, Integral equations for the exterior acoustic problem. Q. J. Mech. Appl. Math. 27, 129–142 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    P. Junghanns, K. Müller, A collocation method for non-linear Cauchy singular integral equations. J. Comput. Appl. Math. 115, 283–300 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    A.I. Kalandia, Mathematical Methods of the Two-Dimensional Elastics (Nauka, Moscow, 1973)Google Scholar
  30. 30.
    A.C. Kaya, F. Erdogan, On the solution of integral equation with strongly singular kernels. Q. Appl. Math. 45, 105–122 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    E.G. Khalilov, Approximate methods for the solution of surface integral equations, Ph.D. thesis, Baku, 1999 (in Russian)Google Scholar
  32. 32.
    E.H. Khalilov, On an approximate solution of a boundary integral equation of mixed problem for Helmholtz equation. Proc. Inst. Math. Mach. NASA 31, 105–110 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    R.E. Kleinman, G.F. Roach, Boundary integral equations for the three-dimensional Helmholtz equation. SIAM Rev. 16, 214–236 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    R.E. Kleinman, G.F. Roach, On modified Green functions in exterior problems for the Helmholtzs equation. Proc. R. Soc. Lond. A 383, 313–333 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1981) (in Russian)zbMATHGoogle Scholar
  36. 36.
    M.A. Krasnosel’skii, P.P. Zabreyko, Geometric Methods of Nonlinear Analysis (Nauka, Moscow, 1975)Google Scholar
  37. 37.
    M.A. Krasnosel’skii, G.M. Vainikko, P.P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Approximate Solution of Operator Equations (Wolters-Noordhoff Publishing, Groningen, 1972)zbMATHCrossRefGoogle Scholar
  38. 38.
    E. Kreyszig, Introductory Functional Analysis with Applications (Wiley, New York, 1978)zbMATHGoogle Scholar
  39. 39.
    I.I. Kudish, Numerical solution methods of a one class nonlinear integral and integro-differential equations. J. Numer. Math. Math. Phys. 26, 14931511 (1986)MathSciNetGoogle Scholar
  40. 40.
    Y.A. Kustov, B.I. Musaev, A Cubature Formula for Double Singular Integral and its Application. VINITI, No 4281 (1981) (in Russian)Google Scholar
  41. 41.
    E. Lackau, W. Tutschke, Complex Analysis, Methods, Trends and Applications (Pergamon Press, London, 1985)Google Scholar
  42. 42.
    E.G. Ladopoulos, On the numerical solution of the finite-part singular integral equations of the first and the second kind used in fracture mechanics. Comput. Methods Appl. Mech. Eng. 65, 253–266 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    E.G. Ladopoulos, Singular integral representation of three-dimensional plasticity problem. Theor. Appl. Fract. Mech. 8, 205–211 (1987)CrossRefGoogle Scholar
  44. 44.
    E.G. Ladopoulos, On a new integration rule with the Gegenbauer polynomials for singular integral equations used in the theory of elasticity. Ing. Arch. 58, 35–46 (1988)zbMATHCrossRefGoogle Scholar
  45. 45.
    E.G. Ladopoulos, On the numerical evaluation of the general type of finite-part singular integrals and integral equations used in fracture mechanics. J. Eng. Fract. Mech. 31, 315–337 (1988)CrossRefGoogle Scholar
  46. 46.
    E.G. Ladoloulos, The general type of finite-part singular integrals and integral equations with logarithmic singularities used in fracture mechanics. Acta Mech. 75, 275–285 (1988)CrossRefGoogle Scholar
  47. 47.
    E.G. Ladopoulos, On the solution of the finite-part singular integro-differential equations used in two-dimensional aerodynamics. Arch. Mech. 41, 925–936 (1989)zbMATHGoogle Scholar
  48. 48.
    E.G. Ladopoulos, Singular integral operators method for two-dimensional plasticity problems. Comput. Struct. 33, 859–865 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    E.G. Ladopoulos, Non-linear integro-differential equations used in orthotropic shallow spherical shell analysis. Mech. Res. Commun. 18, 111–119 (1991)zbMATHCrossRefGoogle Scholar
  50. 50.
    E.G. Ladopoulos, Relativistic elastic stress analysis for moving frames. Rev. Roum. Sci. Tech. Mech. Appl. 36, 195–209 (1991)MathSciNetGoogle Scholar
  51. 51.
    E.G. Ladopoulos, Singular integral operators method for three-dimensional elastoplastic stress analysis. Comput. Struct. 38, 1–8 (1991)zbMATHCrossRefGoogle Scholar
  52. 52.
    E.G. Ladopoulos, Singular integral operators method for two-dimensional elastoplastic stress analysis. Forsch. Ingenieurwes. 57, 152–158 (1991)CrossRefGoogle Scholar
  53. 53.
    E.G. Ladopoulos, New aspects for generalization of the Sokhotski-Plemelj formulae for the solution of finite-part singular integrals used in fracture mechanics. Int. J. Fract. 54, 317–328 (1992)MathSciNetCrossRefGoogle Scholar
  54. 54.
    E.G. Ladopoulos, Non-linear singular integral equations elastodynamics by using Hilbert transformations. J. Nonlinear Anal. Real World Appl. 6, 531–536 (2005)zbMATHCrossRefGoogle Scholar
  55. 55.
    E.G. Ladopoulos, V.A. Zisis, Existence and uniqueness for non-linear singular integral equations used in fluid mechanics. Appl. Math. 42, 345–367 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    E.G. Ladopoulos, V.A. Zisis, Non-linear finite-part singular integral equations arising in two-dimensional fluid mechanics. J. Nonlinear Anal. 42, 277–290 (2000)zbMATHCrossRefGoogle Scholar
  57. 57.
    P. Linz, Analytical and Numerical Methods for Volterra Equations (SIAM, Philadelphia, 1985)zbMATHCrossRefGoogle Scholar
  58. 58.
    J.K. Lu, Boundary Value Problems for Analytic Functions (World Scientific, Singapore, 1993)zbMATHGoogle Scholar
  59. 59.
    K. Mamedov, N. Kosar, Continuity of the scattering function and the Levinson type formula of the boundary value problem. Int. J. Contemp. Math. Sci. 5(4), 159–170 (2010)MathSciNetzbMATHGoogle Scholar
  60. 60.
    K. Mamedov, H. Menken, On the inverse problem of the scattering theory for a boundary problem. Geom. Integrability Quantization 7, 226–237 (2006)MathSciNetzbMATHGoogle Scholar
  61. 61.
    V.N. Monahov, Boundary Value Problems with Free Boundaries for Elliptic Systems (Nauka, Novosibirsk, 1977)Google Scholar
  62. 62.
    A.S. Mshim Ba, W. Tutschke, Functional-Analytic Methods in Complex Analysis and Applications to Partial Differential Equations (World Scientific, Singapore, 1990)Google Scholar
  63. 63.
    B.I. Musaev, On approximate solution of the singular integral equations. AN Az. SSR, Institute of Physics Preprint No 17 (1986)Google Scholar
  64. 64.
    B.I. Musaev, On the approximate solution of the singular integral equations. Izv. AN Az. SSSR, Fizik-Teknik Science 5, 1521 (1986)Google Scholar
  65. 65.
    B.I. Musaev, On the approximate solution of singular integral equations with negative index by Bubnov-Galerkin and collocation methods. Sov. Math. Dokl. 35(2), 411–416 (1987)zbMATHGoogle Scholar
  66. 66.
    N.I. Muskelishvili, Singular Integral Equations (Noordhoff, Groningen, 1953)Google Scholar
  67. 67.
    N.I. Muskhelishvili, Singular Integral Equations, English Edition (Noordhoff, Groningen, 1968)Google Scholar
  68. 68.
    N. Mustafa, On the approximate solution of non-linear operator equations. Far East J. Appl. Math. 27(1), 121–136 (2007)MathSciNetzbMATHGoogle Scholar
  69. 69.
    N. Mustafa, Fixed point theory and approximate solutions of non-linear singular integral equations. Complex Variables Elliptic Equ. 53(11), 1047–1058 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    N. Mustafa, Non-linear singular integro-differential equations. Complex Variables Elliptic Equ. 53(9), 879–886 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    N. Mustafa, On the approximate solution of singular integral equations with negative index. Complex Variables 55(7), 621–631 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    N. Mustafa, Newton–Kantorovich method for two-dimensional non-linear singular integral equations. Maejo Int. J. Sci. Technol. 10(1), 41 (2016)Google Scholar
  73. 73.
    N. Mustafa, Some integral operators and their properties. Kuwait J. Sci. 43(4), 45–55 (2016)MathSciNetGoogle Scholar
  74. 74.
    N. Mustafa, C. Ardil, On the approximate solution of a non-linear singular integral equation. Int. J. Comput. Math. Sci. 3(1), 1–7 (2009)MathSciNetGoogle Scholar
  75. 75.
    N. Mustafa, E.H. Khalilov, The collocation method for the solution of boundary integral equations. Appl. Anal. 88(12), 1665–1675 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    N. Mustafa, M.I. Yazar, On the approximate solution of a non-linear singular integral equation with Cauchy kernel. Far East J. Appl. Math. 27(1), 101–119 (2007)MathSciNetzbMATHGoogle Scholar
  77. 77.
    N.M. Mustafaev, On the Approximate Solution of the Singular Integral Equation that is Defined on Closed Smooth Curve. Singular Integral Operators, vol. 1 (AGU Publications, Baku, 1987), pp. 91–99Google Scholar
  78. 78.
    N. Mustafaev, Approximate solution of non-linear singular integral equations. VINITI (338-B88), 1–36 (1988)Google Scholar
  79. 79.
    N.M. Mustafaev, Error of the approximation to the singular integral equation that is defined on closed smooth curve. In Az. NIINTI (338-B88), 137 (1988)Google Scholar
  80. 80.
    N.M. Mustafaev, Approximate formulas for singular integrals and their application to the approximate solution of singular integral equations that are defined on closed smooth curve, Ph.D. thesis, AN Az. SSR, Institute of Math. and Mech., Baku., 1991Google Scholar
  81. 81.
    V.V. Panasyuk, M.P. Savruk, Z.T. Nazarchuk, Singular Integral Equations Methods in Two-Dimensional Diffraction Problems (Naukova Dumka, Kiev, 1984)Google Scholar
  82. 82.
    V.Z. Parton, P.I. Perlin, Integral Equations of Elasticity Theory (Nauka, Moscow, 1977)zbMATHGoogle Scholar
  83. 83.
    G.Y. Popov, Contact Problems for a Linearly Deformable Base (Kiev, Odessa, 1982)Google Scholar
  84. 84.
    S. Prösdorf, B. Silberman, Projektionsverfahren und die naherungsweise Losung Singularer (Gleichungen, Leipziq, 1977)Google Scholar
  85. 85.
    S. Prösdorf, Some Class Singular Integral Equations (Mir, Moscow, 1979)Google Scholar
  86. 86.
    H. Reşidoğlu (Kh. amedov), On the planar problem of the theory elasticity. Works SSU 1, 27–32 (2001)Google Scholar
  87. 87.
    M.H. Saleh, Basis of quadrature method for non-linear singular integral equations with Hilbert kernel in the spaceH φ,k. In Az. NIINTI 279, 1–40 (1984)Google Scholar
  88. 88.
    V.N. Seychuk, Direct methods of the solutions of singular integral equations that are defined on Lyapunov curve, Ph.D. thesis, Kishinev University, Kishinev, 1987Google Scholar
  89. 89.
    F.G. Trikomi, Integral Equations (Dover, New York, 1985)Google Scholar
  90. 90.
    W. Tutshke, Lözung nichtlinearer partieller differential-gleichungssysteme erster Ordnung in der Ebene cluch verwendung einer komlexen Normalform. Math. Nachr. 75, 283–298 (1976)MathSciNetCrossRefGoogle Scholar
  91. 91.
    W. Tzong-Mou, Solving the non-linear equations by the Mewton-homotopy continuation method with adjustable auxiliary homotopy functions. J. Appl. Math. Comput. 173, 383–388 (2006)zbMATHCrossRefGoogle Scholar
  92. 92.
    F. Ursell, On the exterior problems of acoustics: II. Proc. Camb. Philol. Soc. 84, 545–548 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    G.M. Vaynicco, The regular convergence of operators and the approximate solution of equations, Moscow V sb. Math. Anal. (Itogi nauki i tekniki VINITI AN SSSR) 16, 553 (1979) (in Russian)Google Scholar
  94. 94.
    I.N. Vekua, Generalized Analytic Functions (Pergamon Press, London, 1962)zbMATHGoogle Scholar
  95. 95.
    V.A. Zolotaryevskii, On the Approximate solution of singular integral equations. Math. Res. Kishinev Shtiintsa 9(3), 82–94 (1974)MathSciNetGoogle Scholar
  96. 96.
    V.A. Zolotaryevskii, V.N. Seychuk, The solution of the singular integral equation that is defined on Lyapunov curve by collocation method. Differ. Equ. 19(6), 1056–1064 (1983)Google Scholar
  97. 97.
    A. Zygmund, A.P. Calderon, On the existence of singular integrals. Acta Math. 88, 85–139 (1952)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nizami Mustafa
    • 1
  • Veysel Nezir
    • 1
  1. 1.Department of Mathematics, Faculty of Science and LettersKafkas UniversityKarsTurkey

Personalised recommendations