Advertisement

On the General Decay for a System of Viscoelastic Wave Equations

  • Salim A. MessaoudiEmail author
  • Jamilu Hashim Hassan
Chapter

Abstract

This work is concerned with a coupled system of nonlinear viscoelastic wave equations that models the interaction of two viscoelastic fields. This system has been extensively studied by many authors for relaxation functions decaying exponentially, polynomially, or with some general decay rate. We prove a new general decay result that improves most of the existing results in the literature related to the system of viscoelastic wave equations. Our result allows wider classes of relaxation functions.

Keywords

Viscoelastic System Relaxation function General decay 

Notes

Acknowledgements

The authors would like to express their profound gratitude to King Fahd University of Petroleum and Minerals (KFUPM) and University of Sharjah for their support.

References

  1. 1.
    M.M. Al-Gharabli, M.M. Kafini, A general decay result of a coupled system of nonlinear wave equations. Rend. Circ. Mat. Palermo, II. Ser 67, 145–157 (2018)Google Scholar
  2. 2.
    F. Alabau-Boussouira, P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C.R. Math. 347(15–16), 867–872 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    D. Andrade, A. Mognon, global solutions for a system of Klein–Gordon equations with memory. Bol. Soc. Paran. Mat 21(1/2), 127–138 (2003)Google Scholar
  4. 4.
    V.I. Arnold, Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60 (Springer, New York, 1989)CrossRefGoogle Scholar
  5. 5.
    S. Berrimi, S.A. Messaoudi, Exponential decay of solutions to a viscoelastic. Electron. J. Differ. Equ. 88, 1–10 (2004)zbMATHGoogle Scholar
  6. 6.
    S. Berrimi, S.A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal. Theory Methods Appl. 64(10), 2314–2331 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    X. Cao, Energy decay of solutions for a variable-coefficient viscoelastic wave equation with a weak nonlinear dissipation. J. Math. Phys. 57(2), 021509 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M.M. Cavalcanti, V.N. Cavalcanti Domingos, J.A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electron. J. Differ. Equ. 44, 1–14 (2002)MathSciNetzbMATHGoogle Scholar
  9. 9.
    C.M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity. J. Differ. Equ. 7(3), 554–569 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    C.M. Dafermos, Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37(4), 297–308 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    G. Dassios, F. Zafiropoulos, Equipartition of energy in linearized 3-d viscoelasticity. Q. Appl. Math. 484, 43–89 (1990)zbMATHGoogle Scholar
  12. 12.
    X. Han, M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping. Math. Methods Appl. Sci. 32(3), 346–358 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    W.J. Hrusa, Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data. SIAM J. Math. Anal. 16(1), 110–134 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    W. Liu, General decay of solutions to a viscoelastic wave equation with nonlinear localized damping. Ann. Acad. Sci. Fenn. Math. 34, 291–302 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms. J. Math. Phys. 50(11), 113506 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations. Nonlinear Anal. Theory Methods Appl. 71(5), 2257–2267 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    L.A. Medeiros, M.M. Miranda, Weak solutions for a system of nonlinear Klein–Gordon equations. Ann. di Mat. Pura ed Appl. 146(1), 173–183 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    S.A. Messaoudi, General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2), 1457–1467 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    S.A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. Theory Methods Appl. 69(8), 2589–2598 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    S.A. Messaoudi, W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation. Appl. Math. Lett. 66, 16–22 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    S.A. Messaoudi, N.-E. Tatar, Uniform stabilization of solutions of a nonlinear system of viscoelastic equations. Appl. Anal. 87(3), 247–263 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    J.E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity. Q. Appl. Math. 52(4), 629–648 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    J.E. Muñoz Rivera, E.C. Lapa, Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomially decaying kernels. Commun. Math. Phys. 177(3), 583–602 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    M.I. Mustafa, Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations. Nonlinear Anal. Real World Appl. 13(1), 452–463 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    M.I. Mustafa, General decay result for nonlinear viscoelastic equations. J. Math. Anal. Appl. 457(1), 134–152 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    M.I. Mustafa, S.A. Messaoudi, General stability result for viscoelastic wave equations. J. Math. Phys. 53(5), 053702 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    B. Said-Houari, S.A. Messaoudi, A. Guesmia, General decay of solutions of a nonlinear system of viscoelastic wave equations. Nonlinear Differ. Equ. Appl. 18(6), 659–684 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    M.d.L. Santos, Decay rates for solutions of a system of wave equations with memory. Electron. J. Differ. Equ. 2002(38), 1–17 (2002)Google Scholar
  29. 29.
    I.E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction. Bull. Soc. Math. France 91(2), 129–135 (1963)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SharjahSharjahUnited Arab Emirates
  2. 2.Department of Mathematics and StatisticsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations