Advertisement

Quantifying Octahedral Distortions in Perovskites

  • Jennifer FowlieEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The principal role of the structure in determining the physical properties of transition metal oxides is widely appreciated. In nickelates, the electronic and magnetic properties exhibit a particularly clear lattice dependence. The nickelate phase diagram itself is almost always shown with the x-axis representing the structural distortion in one way or another, for example, the Ni–O–Ni bond angle that dictates the orbital overlap.

References

  1. 1.
    Glazer AM (1975) Simple ways of determining perovskite structures. Acta Crystallogr Sect A 31(6):756–762ADSCrossRefGoogle Scholar
  2. 2.
    Rodrigues O (1840) Des lois géometriques qui regissent les déplacements d’ un systéme solide dans l’ espace, et de la variation des coordonnées provenant de ces déplacement considérées indépendant des causes qui peuvent les produire. J Math Pures Appl 5:380–440Google Scholar
  3. 3.
    Willmott PR, Meister D, Leake SJ, Lange M, Bergamaschi A, Böge M, Calvi M, Cancellieri C, Casati N, Cervellino A, Chen Q, David C, Flechsig U, Gozzo F, Henrich B, Jäggi-Spielmann S, Jakob B, Kalichava I, Karvinen P, Krempasky J, Lüdeke A, Lüscher R, Maag S, Quitmann C, Reinle-Schmitt ML, Schmidt T, Schmitt B, Streun A, Vartiainen I, Vitins M, Wang X, Wullschleger R (2013) The materials science beamline upgrade at the Swiss light source. J Synchrotron Radiat 20(5):667–682CrossRefGoogle Scholar
  4. 4.
    May SJ, Kim JW, Rondinelli JM, Karapetrova E, Spaldin NA, Bhattacharya A, Ryan PJ (2010) Quantifying octahedral rotations in strained perovskite oxide films. Phys Rev B Condens Matter Mater Phys 82(1):1–7Google Scholar
  5. 5.
    Rotella H, Lüders U, Janolin P-E, Dao VH, Chateigner D, Feyerherm R, Dudzik E, Prellier W (2012) Octahedral tilting in strained LaVO\(_{3}\) thin films. Phys Rev B 85(18):184101ADSCrossRefGoogle Scholar
  6. 6.
    Johnson-Wilke RL, Marincel D, Zhu S, Warusawithana MP, Hatt A, Sayre J, Delaney KT, Engel-Herbert R, Schlepütz CM, Kim J-W, Gopalan V, Spaldin NA, Schlom DG, Ryan PJ, Trolier-McKinstry S (2013) Quantification of octahedral rotations in strained LaAlO\(_{3}\) films via synchrotron x-ray diffraction. Phys Rev B 88(17):174101Google Scholar
  7. 7.
    Kan D, Wakabayashi Y, Tajiri H, Shimakawa Y (2016) Interfacially engineered oxygen octahedral rotations and their impact on strain relief in coherently grown SrRuO\(_3\) films. Phys Rev B 94(2):1–6CrossRefGoogle Scholar
  8. 8.
    May SJ, Smith CR, Kim JW, Karapetrova E, Bhattacharya A, Ryan PJ (2011) Control of octahedral rotations in (LaNiO\(_3\))\(_n\)/(SrMnO\(_3\))\(_m\) superlattices. Phys Rev B Condens Matter Mater Phys 83(15):2–5Google Scholar
  9. 9.
    Brahlek M, Choquette AK, Smith CR, Engel-Herbert R, May SJ (2017) Structural refinement of Pbnm-type perovskite films from analysis of half-order diffraction peaks. J Appl Phys 121(4)Google Scholar
  10. 10.
    Yacoby Y, Sowwan M, Stern E, Cross JO, Brewe D, Pindak R, Pitney J, Dufresne EM, Clarke R (2002) Direct determination of epitaxial interface structure in Gd\(_2\)O\(_3\) passivation of GaAs. Nat Mater 1:99–101Google Scholar
  11. 11.
    Willmott PR, Pauli SA, Herger R, Schlepütz CM, Martoccia D, Patterson BD, Delley B, Clarke R, Kumah D, Cionca C, Yacoby Y (2007) Structural basis for the conducting interface between LaAlO\(_3\) and SrTiO\(_3\). Phys Rev Lett 99(15):1–4CrossRefGoogle Scholar
  12. 12.
    Kumah DP, Yacoby Y, Pauli SA, Willmott PR, Clarke R (2013) La-doped BaTiO\(_3\) heterostructures: compensating the polarization discontinuity. APL Mater 1(6):062107ADSCrossRefGoogle Scholar
  13. 13.
    Kumah DP, Malashevich A, Disa AS, Arena DA, Walker FJ, Ismail-Beigi S, Ahn CH (2014) Effect of surface termination on the electronic properties of LaNiO\(_3\) films. Phys Rev Appl 2(5):1–7CrossRefGoogle Scholar
  14. 14.
    Fister TT, Zhou H, Luo Z, Seo SSA, Hruszkewycz SO, Proffit DL, Eastman JA, Fuoss PH, Baldo PM, Lee HN, Fong DD (2014) Octahedral rotations in strained LaAlO\(_3\)/SrTiO\(_3\) (001) heterostructures. APL Mater 2(2):021102ADSCrossRefGoogle Scholar
  15. 15.
    Koohfar S, Disa AS, Marshall MSJ, Walker FJ, Ahn CH, Kumah DP (2017) Structural distortions at polar manganite interfaces. Phys Rev B 96(2):6–11CrossRefGoogle Scholar
  16. 16.
    Kinyanjui MK, Lu Y, Gauquelin N, Wu M, Frano A, Wochner P, Reehuis M, Christiani G, Logvenov G, Habermeier HU, Botton GA, Kaiser U, Keimer B, Benckiser E (2014) Lattice distortions and octahedral rotations in epitaxially strained LaNiO\(_3\)/LaAlO\(_3\) superlattices. Appl Phys Lett 104(22):3–7CrossRefGoogle Scholar
  17. 17.
    Howard CJ, Stokes HT (2005) Structures and phase transitions in perovskites-a group-theoretical approach. Acta Crystallogr A 61(Pt 1):93–111ADSCrossRefGoogle Scholar
  18. 18.
    Rondinelli JM, Spaldin NA (2010) Substrate coherency driven octahedral rotations in perovskite oxide films. Phys Rev B Condens Matter Mater Phys 82(11)Google Scholar
  19. 19.
    Rondinelli JM, May SJ, Freeland JW (2012) Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull 37(03):261–270CrossRefGoogle Scholar
  20. 20.
    Islam MA, Rondinelli JM, Spanier JE (2013) Normal mode determination of perovskite crystal structures with octahedral rotations: theory and applications. J Phys Condens Matter 25(17):175902Google Scholar
  21. 21.
    Balachandran PV, Rondinelli JM (2013) Interplay of octahedral rotations and breathing distortions in charge-ordering perovskite oxides. Phys Rev B Condens Matter Mater Phys 88(5)Google Scholar
  22. 22.
    Borisevich AY, Chang HJ, Huijben M, Oxley MP, Okamoto S, Niranjan MK, Burton JD, Tsymbal EY, Chu YH, Yu P, Ramesh R, Kalinin SV, Pennycook SJ (2010) Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys Rev Lett 105(8):1–4CrossRefGoogle Scholar
  23. 23.
    Zubko P, Gariglio S, Gabay M, Ghosez P, Triscone J-M (2011) Interface physics in complex oxide heterostructures. Annu Rev Condens Matter Phys 2(1):141–165ADSCrossRefGoogle Scholar
  24. 24.
    Vailionis A, Boschker H, Liao Z, Smit JRA, Rijnders G, Huijben M, Koster G (2014) Symmetry and lattice mismatch induced strain accommodation near and away from correlated perovskite interfaces. Appl Phys Lett 105(13):1–5Google Scholar
  25. 25.
    Ohtomo A, Hwang HY (2004) A high-mobility electron gas at the LAO/STO heterointerface. Nature 427(6973):423–426ADSCrossRefGoogle Scholar
  26. 26.
    Reyren N, Thiel S, Caviglia AD, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider CW, Kopp T, Ruetschi A-S, Jaccard D, Gabby M, Muller DA, Triscone J-M, Mannhart J (2007) Superconducting interfaces between insulating oxides. Science (80-.) 317:1196–1199Google Scholar
  27. 27.
    Gazquez J, Stengel M, Mishra R, Scigaj M, Varela M, Roldan MA, Fontcuberta J, Sánchez F, Herranz G (2017) Competition between polar and nonpolar lattice distortions in oxide quantum wells: new critical thickness at polar interfaces. Phys Rev Lett 119(10):1–6CrossRefGoogle Scholar
  28. 28.
    García-Muñoz JL, Rodríguez-Carvajal J, Lacorre P, Torrance JB (1992) Neutron-diffraction study of RNiO\(_3\) (R = La, Pr, Nd, Sm): electronicallyinduced structural changes across the metal-insulator transition. Phys Rev B 46(8):4414–4425Google Scholar
  29. 29.
    Müller KA, Berlinger W, Waldner F (1968) Characteristic structural phase transition in perovskite-type compounds. Phys Rev Lett 21(12):814–817ADSCrossRefGoogle Scholar
  30. 30.
    Aso R, Kan D, Shimakawa Y, Kurata H (2013) Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci Rep 3:1–6CrossRefGoogle Scholar
  31. 31.
    Hatt AJ, Spaldin NA (2010) Structural phases of strained LaAlO\(_3\) driven by octahedral tilt instabilities. Phys Rev B Condens Matter Mater Phys 82(19):1–5Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Quantum Matter PhysicsUniversity of GenevaGenevaSwitzerland

Personalised recommendations