Advertisement

Endo- and Ectomycorrhizas in Tropical Ecosystems of Colombia

  • Clara P. Peña-VenegasEmail author
  • Aída M. Vasco-Palacios
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Mycorrhizal associations are poorly studied in tropical environments, even in countries with tradition studying arbusclar and ecto-mycorrhizal associations. This chapter discusses advances and limitations on mycorrhizal associations in Colombia, including a case study of endo- and ecto-mycorrhizas in an Amazonian tropical rain forest. Most works about mycorrhizal associations in Colombia are limited to searching commercial-plants root colonization and quantifying arbuscular mycorrhizal fungal spores at soil (for arbuscular mycorrhizas), or searching fungal fruiting bodies near reported ectomycorrhizal plant species for inventories (for ectomycorrhizas). Few studies included mycorrhizal associations in natural ecosystems or the use of molecular tools. A case study showed that arbuscular mycorrhizal and ectomomycorrhizal fungi co-exist in tropical environments with similar fungal richness. The ecology and interactions of endo- and ecto-mycorrhizal fungi in this kind of tropical environments are still unknown and open new challenges for future research.

Keywords

Agro-ecosystem Amazonian region Andean region Arbuscular mycorrhizal association Ectomycorrhizal association Fungal diversity Natural ecosystems State of art 

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool Journal of Molecular Biology 215:403–410.PubMedCrossRefGoogle Scholar
  2. Alexander I, Selosse MA (2009) Mycorrhizas in tropical forests: a neglected research imperative New Phytologist 182: 14–16.PubMedCrossRefGoogle Scholar
  3. Ardila PA (2017) Presencia de esporas de hongos micorrícico arbusculares en suelos del bosque alto andino, parque natural Chicaque Forestry engineer thesis. Universidad Distrital Francisco José de Caldas.Google Scholar
  4. Amat-García EC, Amat-García GD, Henao FG (2004) Diversidad taxonómica y ecológica de la entomofauna micófaga en un bosque altoandino de la cordillera oriental de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 107: 223–231Google Scholar
  5. AMVA-Área Metropolitana del Valle de Aburrá (2000) Hongos y musgos del Valle de Aburrá. Medellín (Colombia). Área Metropolitana del Valle de Aburrá, 153 pp.Google Scholar
  6. Avella MA, Rangel CJ (2014) Oak forest: conservation and sustainability. Colombia Forestal 17: 100–117CrossRefGoogle Scholar
  7. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543–545CrossRefGoogle Scholar
  8. Ávila Díaz-Granados RA, Orozco OJ, Moreno GL, Magnitskiy S, Rodríguez A (2009) Influence of mycorrhizal fungi on the rooting of stem and stolon cuttings of the Colombian Blueberry (Vaccinium meridionale Swartz) International Journal of Fruit Science, 9: 372–384.CrossRefGoogle Scholar
  9. Barrios E, Mahuku G, Cortés L, Asakawa N, Jara C, Quintero J (2006) Green manure impacts in nematodes, arbuscular mycorrhizal and pathogenic fungi in tropical soils planted to common beans. 18th Congress of Soil Science. Philadelphia, Pennsylvania, USA.Google Scholar
  10. Bernal R, Gradstein R, Celis M (2016) Catálogo de plantas y líquenes de Colombia Volumen I. First Edition.Google Scholar
  11. Betancur MA, Calderón MH, Betancourt OG, Sucerquia AG (2007) Hongos macromycetes en dos relictos de bosque húmedo tropical montano bajo de la vereda la cuchilla, Marmato, Caldas. Boletín Científico del Museo de Historia Natural Universidad de Caldas 11: 19–31Google Scholar
  12. Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK (2012) Sequencing our way towards understanding global eukariotic biodiversity Trends in Ecology and Evolution 27: 233–243PubMedCrossRefGoogle Scholar
  13. Boekhout T, Pulido MM (1989) The occurrence of macrofungi and their habitats in vegetations along the Parque Los Nevados transect. En: van der Hammen T, Díaz-P. S, Álvarez VJ (eds.) La cordillera central colombiana transecto Parque Los Nevados (Segunda. Parte). Berlin: J. Cramer; Estudios de Ecosistemas Tropandinos: 3.600 ppGoogle Scholar
  14. Bolaños MM, Rivillas-Osorio CA, Suárez-Vásquez S (2000) Identificación de micorrizas arbusculares en suelos de la zona cafetera de Colombia Cenicafé 51: 245–262.Google Scholar
  15. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications BMC bioinformatics 10: 421PubMedPubMedCentralCrossRefGoogle Scholar
  16. CAR-Corporación Autónoma Regional de Cundinamarca (2016) Plan de manejo y conservación del Roble (Quercus humboldtii Bonpl.) en la jurisdicción Car Cundinamarca. Bogotá D.C., Colombia, 41 pp.Google Scholar
  17. Cárdenas D, Salinas N (2006) Libro Rojo de plantas de Colombia. Especies Maderables Amenazadas. SINCHI, Ministerio de Ambiente, Vivienda y Desarrollo territorial. Bogotá.Google Scholar
  18. Corrales A, Henkel TW, Smith ME (2018) Ectomycorrhizal associations in the tropics–biogeography, diversity patterns and ecosystem roles. New Phytologist  https://doi.org/10.1111/nph.15151 CrossRefGoogle Scholar
  19. Dennis RW (1970) Fungus flora of Venezuela and adjacent countries. Kew Bulletin Additional Series III. J. Cramer. VaduzGoogle Scholar
  20. Dexter K, Pennington T, Oliveira-Filho A, Bueno M, Silva de Miranda P, Neves D (2018) Inserting Tropical Dry Forests Into the Discussion on Biome Transitions in the Tropics. Frontiers in Ecology and Evolution 6Google Scholar
  21. Duivenvoorden JF, Lips JM (1993) Landscape ecology of the Middle Caquetá basin. Tropenbos Colombia, BogotáGoogle Scholar
  22. Dumont KP, Umaña MI (1978) Los hongos de Colombia – V. Laterna triscapa y Calostoma cinnabarina en Colombia. Caldasia 12: 349–352Google Scholar
  23. Eden MJ, Bray W, Herrera L, McEwan C (1984) Terra Preta Soils and Their Archaeological Context in the Caqueta Basin of Southeast Colombia American Antiquity 49: 125–140.CrossRefGoogle Scholar
  24. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHRIME improves sensitivity and speed of chimera detection Bioinformatics 27: 2194–2200PubMedPubMedCentralCrossRefGoogle Scholar
  25. Estrada G, Sánchez de Prager M (1995) Dependencia del café Coffea arabica L var. colombia por micorriza vesiculo-arbuscular Acta agronómica 45: 85–88.Google Scholar
  26. Franco-Molano AE (2002) Hongos. En: Mecanismo de Facilitación. IAvH. Resultados del Segundo Día de la Biodiversidad. Departamento del Quindío. Resultados. IAvH. 52 pp.Google Scholar
  27. Franco-Molano AE, Aldana R, Halling R (2000) Setas de Colombia (Agaricales, Boletales y otros hongos). Guía de Campo. Colciencias Universidad de Antioquia, Medellín, 156 ppGoogle Scholar
  28. Franco-Molano AE, Corrales A, Vasco-Palacios AM (2010) Macrohongos de Colombia ii. Listado de especies de los ordenes Agaricales, Boletales, Cantharellales y Russulales (Agaricomycetes, Basidiomycota). Actualidades biológicas 32: 89–113Google Scholar
  29. Franco-Molano AE, Uribe-Calle E (2000) Hongos Agaricales y Boletales de Colombia. Biota Colombiana 1: 25–43Google Scholar
  30. Franco-Molano AE, Vasco-Palacios AM, López-Quintero C, Boekhout T (2005) Macrohongos de la región del Medio Caquetá. Guía de campo. Multimpresos. Medellín. 219 pp.Google Scholar
  31. García AG, Rojas AC (2010) Macrohongos presentes en el bosque seco tropical de la región del Valle del Cauca, Colombia. Revista de Ciencias 14: 45–54Google Scholar
  32. García de León D, Neuenkampa L, Moora M, Öpik M, Davison J, Peña-Venegas CP, Vasar M, Jairus T, Zobel (2018) Arbuscular mycorrhizal fungal communities in tropical rain forest are resilient to slash-and-burn agriculture Journal of Tropical Ecology.Google Scholar
  33. Gómez AF, Sánchez de Prager M (2012) Actividad biológica de hongos formadores de micorriza arbuscular en un suelo Humic dystrudepts cultivado con maíz y diferentes fuentes de fertilización Acta Agronómica Special Issue.Google Scholar
  34. González C, Jarvis A, Palacio JD (2006) Biogeography of the Colombian oak, Quercus humboldtii Bonpl.: geographical distribution and their climatic adaptation. International Centre for Tropical Agriculture (CIAT)/Museo de Historia Natural, Universidad del Cauca, Popayán.Google Scholar
  35. Grupe AC, Vasco-Palacios AM, Boekhout T, Smith M, Henkel T (2016) Sarcodon in the Neotropics: four new species from Colombia and a key to selected species. Mycologia 108: 791–805,  https://doi.org/10.3852/15-254 CrossRefGoogle Scholar
  36. Guerrero E (1993) Evaluación de la micorriza en ecosistemas andinos del parque Nacional Natural Chingaza. Primera etapa: Paramo. Pontificia Universidad Javeriana.Google Scholar
  37. Guzmán G, Torres M, Ramirez-Guillén F, Ríos-Hurtado A (2004) Introducción al conocimiento de los Macromicetos del Chocó, Colombia. Revista Mexicana de Micología 19: 33–43Google Scholar
  38. Guzmán G, Varela (1978) Los Hongos de colombia III. Observaciones sobre los hongos, líquenes y mixomicetos de colombia. Caldasia 12: 309–437Google Scholar
  39. Guzmán OA, Castaño J, Sánchez de Prager M (2013) Estudio preliminar del efecto de microorganismos benéficos sobre el tomate (Solanum lycopersicum L.) y el nematodo del nudo radical (Meloidogyne spp.) Revista Agronomía 21: 51–64.Google Scholar
  40. Hahn C, Christan J (2002) Ramaria chocoënsis sp. nov., a gomphoid member of Ramaria sect. dendrocladium from Colombia, El Chocó, with special regards to rhizomorph anatomy. Mycological Progress 1: 383–398.  https://doi.org/10.1007/s11557-006-0035-6 CrossRefGoogle Scholar
  41. Halling R (1989) A Synopsis of Colombian Boletes. Mycotaxon 44: 93–113Google Scholar
  42. Halling R (1992) A new species of Boletus section Luridi from Colombia. Brittonia 43: 322–325  https://doi.org/10.2307/2806931 CrossRefGoogle Scholar
  43. Halling R (1996) Boletaceae (Agaricales): Latitudinal biodiversity and biological interactions in Costa Rica and Colombia. Revista de Biología Tropical 44 (Suppl 4): 111–114Google Scholar
  44. Halling R, Mueller G (2005) Common mushrooms of the Talamanca mountains. Costa Rica. The New York Botanical Garden Press, N.Y. U.S.A. 198 pp.Google Scholar
  45. Halling R, Mueller G, Dallwitz M (1999) A new Phylloporus (Basidiomycetes, Boletaceae) with a key to species in Colombia and Costa Rica. Mycotaxon 73: 63–67Google Scholar
  46. Halling R, Obrevo L (1987) A new species of Rozites from oak forests of Colombia, with notes on biogeography. Mycologia 79: 674–678  https://doi.org/10.2307/3807818 CrossRefGoogle Scholar
  47. Hawksworth DL, Lücking R (2017) Fungal Diversity Revisited : 2. 2 to 3. 8 Million Species, 1–17. Microbiol Spectr. 5(4) https://doi.org/10.1128/microbiolspec.FUNK-0052-2016.
  48. Henao-M LG, Ruiz A (2006) Investigación y gestión local de robledales alrededor del uso tradicional de macromicetes en la cordillera Oriental colombiana. pp 215–224. En: Solano-Vargas CN. I Simposio Internacional de Robles y Ecosistemas Asociados, Memorias. Fundación Natura, 292pp.Google Scholar
  49. Henkel TW, Aime MC, Chin M, Miller SL, Vilgalys R, Smith ME (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbemonodominant forests of the Guiana Shield. Biodiversity and Conservation 21: 2195–2220.  https://doi.org/10.1007/s10531-011-0166-1 CrossRefGoogle Scholar
  50. Horak E, Halling RE (2018) New records of Phaeocollybia from Colombia. Mycologia 83(4): 464–472.CrossRefGoogle Scholar
  51. Howeler RH, Cadavid LF (1990) Short-and long-term fertility trials in Colombia to determine the nutrient requirements of cassava Fertilizer Research 26: 61–80.CrossRefGoogle Scholar
  52. Howeler RH, Cadavid LF, Burckhardt E (1982) Response of cassava to VA mycorrhizal inoculation and phosphorus application in greenhouse and field experiments Plant and Soil 69: 327–339.CrossRefGoogle Scholar
  53. Howeler RH, Sieverding E (1982) La importancia de las micorrizas en la absorción de fósforo por yuca Suelos Ecuatoriales 12: 182–192.Google Scholar
  54. Howeler RH, Sieverding E (1983) Potentials and limitations of mycorrhizal inoculation illustrated by experiments with field-grown cassava Plant and Soil 75: 245–26.CrossRefGoogle Scholar
  55. Howeler RH, Sieverding E, Saif S (1987) Practical aspects of mycorrhizal technology in some tropical crops and pastures Plant and Soil 100: 249–283.CrossRefGoogle Scholar
  56. International Center of Tropical Agriculture – CIAT (2000) Catálogo de cepas de micorrizas arbusculares.Google Scholar
  57. International Union for Conservation of Nature- IUCN (2009). IUCN Red List of Threatened Species Version 2009.2. On line: http://www.iucnredlist.org [03/12/2009].
  58. Lee J, Lee S, Young P (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 65: 339–349.PubMedCrossRefPubMedCentralGoogle Scholar
  59. León D (2015) Comunidades nativas de HFMA asociadas a yuca silvestre en la Amazonia colombiana en época seca y lluviosa bajo dos tipos de paisaje MSc thesis Pontificia Universidad JaverianaGoogle Scholar
  60. López-Q C, Vasco-Palacios AM, Franco-Molano AE (2007) Macrohongos de un bosque de roble, Quercus humboldtii Bonpl., en la vereda Contrafuerte, municipio de Andes (Colombia) pp. 21–34. In: Reserva natural regional Cuchilla Jardín Támesis Antioquia, Una mirada a su biodiversidad. CORANTIOQUIA, RedBio, Gobernación de Antioquia, Corporación Ambiental, Medellín.156 pp.Google Scholar
  61. López-Q C, Straatsma G, Franco-Molano AE, Boekhout T (2012) Macrofungal diversity in Colombian Amazon forests varies with regions and regimes of disturbance. Biodiversity and Conservation 21: 2221–2243CrossRefGoogle Scholar
  62. Mecanismo de Facilitación (2001) Día de la biodiversidad. Resultados. http://www.humboldt.org.co/diadeladiversidad/resultados/hongos.html (Uploaded on Abril 22, 2008)
  63. Milne I, Wright F, Rowe G, Marshal DF, Husmeier D, McGuire G (2004) TOPALi: software for automatic identification of recombinant sequences within DNA multiple alignments Bioinformatics 20:1806–1807PubMedCrossRefGoogle Scholar
  64. Montenegro-Gómez SP, Gómez-Posada S, Barrera-Berdugo SE (2017) Efecto de la gallinaza sobre Azotobacter sp., Azospirillum sp., y hongos micorrízicos arbusculares en un cultivo de cebolla (Allium fitulosum) Revista Entramado 26: 250–257.CrossRefGoogle Scholar
  65. Montoya F, Arias D, Betancur-Agudelo M (2005) Contribución al conocimiento de los hongos Macromicetos del resguardo indígena Nuestra Señora de la Candelaria de la Montaña Riosucio, Caldas. Boletín Científico, Museo de Historia Natural 9: 19–30Google Scholar
  66. Moora M, Davison J, Öpik M, Metsis M, Saks Ü, Jairus T, Vasar M, Zobel M (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology 90(3): 609–621PubMedCrossRefPubMedCentralGoogle Scholar
  67. Moyersoen B (2012) Dispersion, an important radiation mechanism for ectomycorrhizal fungi in Neotropical lowland forests? In: Sudarshana, P., (Ed.), Tropical Forest. InTech, pp. 93–116Google Scholar
  68. Moyersoen B, Weiss M (2014) New neotropical sebacinales species from a Pakaraimaea dipterocarpacea forest in the guayana region, southern Venezuela: structural diversity and phylogeography. Plos One 9. e103076  https://doi.org/10.1371/journal.pone.0103076 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mueller G (1996) Distribution and species composition of Laccaria in tropical and subtropical America. Revista de Biología Tropical 44 (Supl. 4): 131–135Google Scholar
  70. Mueller G, Singer R (1988) Laccaria gomezii, a new agaric species from the querceta of Colombia and Costa Rica. Mycotaxon 23: 223–227Google Scholar
  71. Mueller G, Wu Q (1997) Mycological contributions of Rolf Singer: Field itinerary, index to new taxa, and list of publications. Fieldiana Botany. New Series 38. 124 ppGoogle Scholar
  72. Neuenkamp L, Moora M, Öpik M, Davison J, Gerz M, Männistö M, Jairus T, Vasar M, Zobel M (2018) The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities New Phytologist  https://doi.org/10.1111/nph.14995.CrossRefGoogle Scholar
  73. Nieves-Rivera AM., Santos-Flores CJ, Betancourt C (1997) Notas sobre los Agaricales del páramo de Guasca, departamento de Cundinamarca, Colombia. Caldasia 19: 349–351Google Scholar
  74. Oehl F, Adriano de Souza F, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes Mycotaxon 106: 311–360.Google Scholar
  75. Oehl F, Alves da Silva G, Goto BT, Sieverding E (2011a) Glomeromycota: three new genera and glomoid species reorganized Mycotaxon 116: 75–120.CrossRefGoogle Scholar
  76. Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G (2011b) Advances in Glomeromycota taxonomy and classification IMA Fungus 2: 191–199.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Öpik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences Botany 92: 135–147CrossRefGoogle Scholar
  78. Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a Boreonemoral forest New Phytologist 184: 424–437PubMedPubMedCentralCrossRefGoogle Scholar
  79. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe Journal of Ecology 94: 778–790.CrossRefGoogle Scholar
  80. Öpik M, Zobel M, Cantero JC, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Lüra J, Metsis M, Neshataeva V, Paal J, Phosri C, Pölme S, Reier Ü, Saks Ü, Schimann H, Thiéry O, Vassar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23: 411–430.CrossRefGoogle Scholar
  81. Osorio CEU, Sánchez DAC, Molano AEF (2008a) Multiplicación de hongos micorriza arbuscular (HMA) y efecto de la micorrización en plantas micropropagadas de banano (Musa AAA cv Gran Enano) (Musaceae) Revista de la Facultad de Agricultura de Medellín 61: 4279–4290.Google Scholar
  82. Osorio NW, Díez MC, Sierra J, Paternina L (2008b) Ecological considerations on the mycorrhizal association in soils of Andean-highlands. Workshop UTPL Mycorrhizas in Tropical Forests.Google Scholar
  83. Osorio NW, Habte M (2013) Synergistic effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on Leucaena seedlings in an Oxisol fertilized with rock phosphate Botany 91: 274–281.Google Scholar
  84. Palacio M, Gutiérrez Y, Franco-Molano AE, Callejas-Posada (2015) Nuevos registros de macrohongos (Basidiomycota) para Colombia procedentes de un bosque seco tropical. Actualidades Biológicas 37: 319–339Google Scholar
  85. Parra-Aldana A, Botero V, Díez MC (2011) El roble negro, patrimonio natural del Huila ¿Qué hacer para su conservación?. Centro de Publicaciones, Universidad Nacional de Colombia. ISBN: 978–958–719–747–1Google Scholar
  86. Parrado-Rosselli A (2005) Fruit availability and seed dispersal in terra firme forest of Colombian Amazonia. (Doctoral dissertation). University of Amsterdam. Amsterdam, The Netherlands.Google Scholar
  87. Pedraza JE (1981) Respuesta de plántulas de Pinus caribaea Morelet var. hondurensis Barr. et Golf. a micorrización y fertilización fosfatada en un oxisol de los Llanos Orientales de Colombia 1er Congreso Nacional de la Ciencia del Suelo Villavicencia, Colombia.Google Scholar
  88. Peña-Venegas CP (2001) Dinámica de la comunidad micorriza arbuscular en bosques de la Amazonia sur de Colombia Revista Suelos Ecuatoriales 31: 103–107.Google Scholar
  89. Peña-Venegas CP (2010) Arbuscular mycorrhizal fungi in the Amazon región. In: Mycorrhiza: occurrence in natural and restored environments. M. Pagano eds. Nova Publishers, New York: 75–86.Google Scholar
  90. Peña-Venegas CP (2015) People, soil and manioc interactions in the upper Amazon region. PhD Thesis. Wageningen University ISBN: 978–94–6257–322–2.Google Scholar
  91. Peña-Venegas CP, Verschoor G, Stomph TJ, Struik P C (2017) Challenging current knowledge on Amazonian Dark Earths: Indigenous manioc cultivation on different soils of the Colombian Amazon. Culture, Agriculture, Food and Environment: 1–11.Google Scholar
  92. Pérez Botero JC, Usma J. (2012) Caracterización de hongos comestibles en bosques de roble (Quercus humboldtii Bonpl.). Tesis pregrado, Universidad de AntioquiaGoogle Scholar
  93. Petersen RH, Mueller G (1992) New South American taxa of Cantharellus, C. nothofagorum, C. xanthoscyphus and C. lateritius var. colombianus. Boletín de la Sociedad Argentina de Botánica 28: 195–200Google Scholar
  94. Phiri S, Rao IM, Barrios E, Singh BR (2003) Plant growth, mycorrhizal association, nutrient uptake and phosphorus dynamics in a volcanic-ash soil in Colombia as affected by the establishment of Tithonia diversiflora Journal of Sustainable Agriculture 21: 43–61.CrossRefGoogle Scholar
  95. Phosri C, Rodriguez A, Sanders IR, Jeffries P (2010) The role of mycorrhizas in more sustainable oil palm cultivation Agriculture, Ecosystems and Environment 135: 187–193CrossRefGoogle Scholar
  96. Pyare S, Longland WS (2001) Patterns of ectomycorrhizal-fungi consumption by small mammals in remnant old-growth forests of the Sierra Nevada. Journal of Mammalogy 82: 681–689CrossRefGoogle Scholar
  97. Pinto JB (1992) Evaluación de poblaciones micorrizales en suelos degradados y de bosque maduro en Araracuara-Amazonas. Corporación Araracuara-COA.Google Scholar
  98. Pinto VJ (1988) Evaluación de la ocurrencia de la simbiosis micorrizal en plantas de inchi (Caryodendron orinocense Kast) de diferentes edades en San José del Guaviare. Thesis Universidad Distrital Francisco José de Caldas.Google Scholar
  99. Pinto VJ, Pedraza J (1988) Cambios estacionales de la población micorrizal relacionada con las características climáticas y edáficas en suelos donde crece el inchi (Caryodendron orinocense Kast) en San José del Guaviare Suelos Ecuatoriales 18: 226–239.Google Scholar
  100. Piragauta M, Pérez E (2006) Uso de hongos por campesinos de los Municipios de Moniquirá y Arcabuco, departamento de Boyacá. Tesis pregrado, Universidad Pedagógica y Tecnológica de ColombiaGoogle Scholar
  101. Pizano C, González R, González MF, Castro-Lima F, López R, Rodríguez N, Idárraga-Piedrahíta A, Vargas W, Vergara-Varela, H, Castaño-Naranjo A, Devia W, Rojas A, Cuadros H, Toro JL (2014) Las plantas de los bosques secos de Colombia. In: Pizano C, García H (eds.). El Bosque Seco Tropical en Colombia. Bogotá, DC, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).Google Scholar
  102. Posada RH, Madriñán S, Rivera EL (2012) Relations between the litter colonization by saprophytic and arbuscular mycorrhizal fungi with depth in a tropical forest Fungal Biology 116: 747–755.PubMedCrossRefGoogle Scholar
  103. Posada-Almanza RH, Franco-Castro LA, Medina-Girón E (2006) El tiempo de establecimiento de pasturas y su relación con la micorriza arbuscular en paisajes de loma y vega Acta biológica Colombiana 11: 55–64.Google Scholar
  104. Possú WB, Unigarro A, Rosero SC, Solarte AF (2004) Determinación de hongos formadores de micorrizas (HMA) en Theobroma cacao L, Musa sp., Simmonds, Borojoa patinoi. Cuatr y Bactris gasipaes HBK en el municipio de Tumaco, Nariño Revista de Ciencias Agrícolas 21.Google Scholar
  105. Prada PH (2009) Identificación de hongos formadores de micorriza arbuscular (HMA) en agroecosistemas de aguacate (Persea americana) y su relación con algunas características edáficas, en tres regiones de Antioquia. Biology thesis Universidad de Antioquia.Google Scholar
  106. Pulido M (1983) Estudios en Agaricales Colombianos – los hongos de Colombia IX- Biblioteca José Jerónimo Triana No 7 Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 143 pp.Google Scholar
  107. Pulido M, Boekhout T (1989) Distribution of macrofungi along The Parque Los Nevados transect pp. 485–505 In: Van der Hammen T, Díaz-Piedrahita S, Alvarez V (eds.) La cordillera Central Colombiana transecto Parque Los Nevados (segunda parte). Studies on Tropical Andean Ecosystems, Volume 3Google Scholar
  108. Quiroga LMZ, Sánchez de Prager M, Barrios E (2009) Response of Melinis minutiflora to inoculation with arbuscular mycorrhizal fungi in an Inceptisol of Colombia Acta Agronómica 58: 225–233.Google Scholar
  109. Ramírez MM, Oehl F, Pérez A, Rodríguez A (2000) Arbuscular mycorrhizal fungi (AMF) diversity obtained from gooseberry plantations (Physalis peruviana) in a Colombian Andean region Silva Fennica 752: 1.Google Scholar
  110. Restrepo JF (2006) Comparación de la diversidad y abundancia de micorrizas arbusculares en diferentes ecosistemas naturales en el parque nacional natural Amacayacu, Amazonas, Colombia. Biology thesis. Universidad de Antioquia.Google Scholar
  111. Ríos RG, Gallego RR (1997) Hongos del orden Glomales (Zygomycetes) presentes en una porción de bosque andino localizado en el parque nacional natural Las Orquídeas. Biology degree. Universidad de Antioquia.Google Scholar
  112. Rivillas OCA (1995) Efecto y detección bioquímica de hongos-micorrícico-arbusculares en las variedades de café caturra y Colombia 16th congreso ASCOLFI January 1995.Google Scholar
  113. Rodríguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security The ISME journal 9: 1053–1061.PubMedPubMedCentralGoogle Scholar
  114. Saks Ü, Davison J, Öpik M, Vasar M, Moora M, Zobel M (2014) Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey Botany 92: 277–285.CrossRefGoogle Scholar
  115. Saldarriaga Y, Pineda F, García G, Velásquez L, Guzmán G (1988a) Nuevos registros de Agaricales en Colombia. Revista Mexicana de Micología 4: 333–342Google Scholar
  116. Saldarriaga Y, Velásquez L, Pineda F, García G (1988b) Hongos de Antioquia. Universidad de Antioquia. 206ppGoogle Scholar
  117. Sánchez de Prager M (2003) Actividad biológica en la rizosfera del maracuya-Paciflora edulis, f flavicarpa Degener en diferentes sistemas de manejo, estados de desarrollo y condiciones fitosanitarias. PhD Thesis. Universidad Pontificia de Madrid.Google Scholar
  118. Sánchez de Prager M (2004) Las endomicorrizas: expresión bioedáfica de importancia en el trópico Universidad Nacional de Colombia Palmira, Valle 352 p.Google Scholar
  119. Sánchez de Prager M, Almanza RP, Velásquez D, Narváez M (2010) Metodologías básicas para el trabajo con micorriza arbuscular y hongos formadores de micorriza arbuscular Universidad Nacional de Colombia Sede Palmira. 139 p.Google Scholar
  120. Schenck NC, Spain JL, Sieverding E (1986) A new sporocarpic species of Acaulospora (Endogonaceae) Mycotaxon 25: 111–117.Google Scholar
  121. Schenck NC, Spain JL, Sieverding E, Howeler RH (1984) Several new and unreported vesicular-arbuscular mycorrhizal fungi (Endogonaceae) from Colombia Mycologia 76: 685–699.Google Scholar
  122. Schüßler A, Schwarzotti D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution Mycological Resources 105: 1413–1421.Google Scholar
  123. Sene S, Avril R, Chaintreuil C, Geoffroy A, Ndiaye C, Diedhiou AG, Sadio O, Courtecuisse R, Sylla SN, Selosse MA et al. (2015) Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles). Mycorrhiza 25: 547–559.PubMedCrossRefGoogle Scholar
  124. SIAC (2016) Sistema de Información Ambiental de Colombia – SIAC. Ministerio de Medio Ambiente.Google Scholar
  125. Sierra JD, González JA, Sáenz M (2011) Registro preliminar de macrohongos (ascomycetes y basidiomycetes) en el bosque húmedo montano del alto el romeral (municipio de Angelópolis, departamento de Antioquia Colombia). Revista Facultad Nacional de Agronomía 64: 6159–6174Google Scholar
  126. Sieverding E (1984) Aspectos básicos de la investigación de MVA In: Investigaciones sobre micorrizas en Colombia Universidad Nacional de Colombia.Google Scholar
  127. Sieverding E (1987) A VA-mycorrhizal fungus, Glomus glomerulatum sp. nov. with two hyphal attachments and spores formed only in sporocarps Mycotaxon 29: 73–79.Google Scholar
  128. Sieverding E (1989a) La micorriza: Un componente biotecnológico en la producción vegetal Revista Colombia Ciencia y Tecnología 7: 9–11.Google Scholar
  129. Sieverding E (1989b) Ecology of VAM fungi in tropical ecosystems Agriculture, Ecosystems and Environment 29: 369–390.CrossRefGoogle Scholar
  130. Sieverding E, Alves da Silva G, Berndt R, Oehl F (2014) Rhizoglomus, a new genus of the Glomeraceae Mycotaxon 129: 373–386.Google Scholar
  131. Sieverding E, Howeler RH (1985) Influence of spores of VA mycorrhizal fungi on cassava yield response to phosphorus fertilization Plant and Soil 88: 213–221.CrossRefGoogle Scholar
  132. Sieverding E, Leihner DE (1984a) Effect of herbicides on population dynamics of VA-mycorrhiza with cassava Angew Botanik 58: 283–294.Google Scholar
  133. Sieverding E, Leihner DE (1984b) Influence of crop rotation and intercropping of cassava with legumes on VA mycorrhizal symbiosis of cassava Plant and Soil 80:143–146.Google Scholar
  134. Sieverding E, Oehl F (2006) Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes Journal of Applied Botany and Food Quality 80: 69–81.Google Scholar
  135. Sieverding E, Toro T (1987) Acaulospora denticulata sp. nov. and Acaulospora rehmii sp. nov. (Endogonaceae) with ornamented spore walls Angew Botanik 61: 217–223.Google Scholar
  136. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from VA endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58: 291–295.Google Scholar
  137. Singer R (1963) Oak mycorrhiza fungi in Colombia. Mycopathologia 20: 239–252 doi: https://doi.org/10.1007/BF02089212 CrossRefGoogle Scholar
  138. Singer R (1970) Strobilomycetaceae (Basidiomycetes). Flora Neotropica, Monograph 5. 34 pp.Google Scholar
  139. Singer R, Araujo I, Ivory MH (1983) The ectotrophically mycorrhizal fungi of the neotropical lowlands, especially Central Amazonia. Nova Hedwigia Beihefte. 77: 1–352Google Scholar
  140. Singer R, Garcia J, Gomez LD (1990) The Boletineae of Mexico and Central America I & II. Nova Hedwigia, Beiheft, Beiheft 98. 70 pp.Google Scholar
  141. Singer R, Morello JH (1960) Ectotrophic forest tree mycorrhizae and forest communities. Ecology 41: 549–551CrossRefGoogle Scholar
  142. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd. Academic Press New York, ISBN, 440026354, 605.Google Scholar
  143. Spain JL, Sieverding E, Oehl F (2006) Appendicispora: a new genus in the arbuscular mycorrhiza-forming Glomeromycetes, with a discussion of the genus Archaeospora Mycotaxon 97: 163–182.Google Scholar
  144. Spain JL, Sieverding E, Toro T (1989) Scutellospora biornata: a new species in the Endogonaceae from the Llanos Orientales of Colombia Mycotaxon 35: 219–227.Google Scholar
  145. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz RV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi Science. 346, 1256688.PubMedGoogle Scholar
  146. Tedersoo L, Brundrett (2017) Evolution of ectomycorrhizal symbiosis in plants. In Tedersoo (edt) Biogeography of Mycorrhizal Symbiosis. Springer, Cham. 407–467CrossRefGoogle Scholar
  147. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20: 217e263 doi: https://doi.org/10.1007/s00572-009-0274-x.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Tedersoo L, Põlme S (2012) Infrageneric variation in partner specificity: multiple ectomycorrhizal symbionts associate with Gnetum gnemon (Gnetophyta) in Papua New Guinea. Mycorrhiza 22: 663–668.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Tobón LE (1991) Ascomicetos de Colombia: Discomicetos del Departamento de Antioquia. Caldasia: 327–335.Google Scholar
  150. Triana CV (2015) Evaluación de la especificidad entre plantas e inóculos comerciales de micorrizas para el desarrollo y producción de arveja (Pisum sativum L) Thesis Agroecological Engineer Corporación Universitaria Minuto de Dios.Google Scholar
  151. Tulloss RE (2005) Amanita-distribution in the Americas, with comparison to eastern and southern Asia and notes on spore character variation with latitude and ecology. Mycotaxon, 93(189), e231.Google Scholar
  152. Tulloss RE, Franco-Molano AE (2008) Studies in Amanita subsection Vittadiniae II a new species from Colombia savanna. Mycotaxon 105: 317–323Google Scholar
  153. Tulloss RE, Ovrebo C, Halling R (1992) Studies on Amanita (Amanitaceae) from Andean Colombia, Memories of the New York Botanical Garden. 66: 27–30Google Scholar
  154. Uehling JK, Henkel TW, Aime MC, Vilgalys R, Smith ME (2012) New species and distribution records for Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield, with a key to the lowland Neotropical taxa. Fungal Biology 116: 1263–1274PubMedCrossRefPubMedCentralGoogle Scholar
  155. Van Der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future New Phytologist 205: 1406–1423PubMedCrossRefPubMedCentralGoogle Scholar
  156. Varela-Cervero S, Vassar M, Davison J, Bares JM, Öpik M, Azcón-Aguilar C (2015) The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species Environmental MicrobiologyGoogle Scholar
  157. Vargas-Estupiñán N, Pardo-de La Hoz CJ, Danies G, Franco-Molano AE, Jiménez P, Restrepo S, Grajales A (2017) Defining the phylogenetic position of Amanita species from Andean Colombia. Mycologia 1–16.Google Scholar
  158. Vasco-Palacios AM (2016) Ectomycorrhizal fungi in Amazonian tropical forests in Colombia. Doctoral Thesis, Utrecht University. Editorial Panamericana, Bogotá. 201 pp.Google Scholar
  159. Vasco-Palacios AM, Franco-Molano AE (2005) A new species of Gloeocantharellus (Fungi-Basidiomycetes) from Colombian Amazonia. Mycotaxon 91: 87–92Google Scholar
  160. Vasco-Palacios AM, Franco-Molano AE, López-Quintero C, Boekhout T (2005) Macromicetes (Ascomycota, Basidiomycota) de la región del Medio Caquetá, departamentos de Caquetá y Amazonas (Colombia). Biota Colombiana 6: 127–159Google Scholar
  161. Vasco-Palacios AM, Hernández J, Peñuela-Mora MC, Franco-Molano AE, Boekhout T (2018) Ectomycorrhizal fungi diversity in a white sand forest in western Amazonia. Fungal Ecology 31: 9–18. doi: https://doi.org/10.1016/j.funeco.2017.10.003 CrossRefGoogle Scholar
  162. Vasco-Palacios AM, López-Quintero C, Franco-Molano AE, Boekhou, T (2014) Austroboletus amazonicus sp. nov. and Fistulinella campinaranae var. scrobiculata, two commonly occurring boletes from a forest dominated by Pseudomonotes tropenbosii (Dipterocarpaceae) in Colombian Amazonia. Mycologia 106: 1004–1014.CrossRefGoogle Scholar
  163. Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüßler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae Mycological Research 3: 137–153.CrossRefGoogle Scholar
  164. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2 - a multiple sequence alignment editor and analysis workbench Bioinformatics 25: 1189–1191PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wu Q, Mueller GM (1995) The genus Craterellus (Basidiomycetes, Aphyllophorales) in Costa Rica and Colombia. Documents Mycologiques XXV: 487–496Google Scholar
  166. Zabala FJV (2012) Efecto de abonos verdes en la agregación y micorrización en el cultivo de maíz (Zea mays L.) en un suelo de ladera de Palmira (Colombia) MSc thesis Universidad Nacional de Colombia.Google Scholar
  167. Zabala FJV, Sánchez de Prager M (2014) Dinámica de los hongos micorriza arbuscular (MA) en un Humic Dystrudepts sembrado con maíz Zea mays L. y abonos verdes (AV) Revista de Investigación Agraria y Ambiental (5): 69–79Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Clara P. Peña-Venegas
    • 1
    Email author
  • Aída M. Vasco-Palacios
    • 2
    • 3
  1. 1.Instituto Amazónico de Investigaciomnes Científicas SinchiLeticiaColombia
  2. 2.Biomicro - Grupo de Microbiología Ambiental, Escuela de MicrobiologíaUniversidad de AntioquiaMedellínColombia
  3. 3.Fundación Biodiversa ColombiaBogotáColombia

Personalised recommendations