A Systematic Review of South American and European Mycorrhizal Research: Is there a Need for Scientific Symbiosis?

  • César MarínEmail author
  • C. Guillermo Bueno
Part of the Fungal Biology book series (FUNGBIO)


With the application of new molecular analyses to determine soil fungal community composition, and with new macroecological approaches to analyze the biogeographic patterns of mycorrhizal plant species and communities, mycorrhizal ecology has notably advanced. However, this advance has not been balanced between Northern and Southern hemispheres. While the most complex ecosystems and biodiversity hotspots are located in the south, the initiatives and resources to investigate them are mostly coming from the north. This situation leads to the development of northern perspectives on southern areas, enlarging the gap between the research needs for local sustainable development and the improvement of global mycorrhizal ecological models. In this review, we compare the research production of South America and Europe, analyzing their chronological and thematic trends from 1975 to 2018. In Europe, a total of 1927 articles were produced, with a majority of articles focusing on the anthropogenic effects on the mycorrhizal symbiosis, while 797 articles were produced in South America (SA), with a majority focusing on the community structure of mycorrhizal fungi. We suggest that the lack of research resources in the Southern hemisphere can be overcome by using regional/social symbiotic strategies, networking, and collaborative initiatives, enhancing the integration of southern research into the global context.


Anthropogenic effects Community structure Mycorrhizal traits Research gaps Scientific networks 



C.M. was funded by the Universidad de O’Higgins postdoctoral research fund and by the Fondecyt project No. 1190642 (Chilean Goverment). C.G.B. was funded by the Estonian Research Council (IUT 20–28) and the European Regional Development Fund (center of excellence: EcolChange).


  1. Amano T, Sutherland WJ (2013) Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc R Soc B 280(1756):20122649CrossRefGoogle Scholar
  2. Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515(7528):505–511CrossRefGoogle Scholar
  3. Berkeley MJ (1841) On an edible fungus from Tierra del Fuego, and an allied Chilean species. Trans Linn Soc Lond 19(1):37–44. CrossRefGoogle Scholar
  4. Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62(8):3005–3010PubMedPubMedCentralGoogle Scholar
  5. Bonfante P (2018) The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytol 220(4):982–995CrossRefGoogle Scholar
  6. Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220(4):1108–1115CrossRefGoogle Scholar
  7. Bueno CG, Marín C, Silva-Flores P, Aguilera P, Godoy R (2017a) Think globally, research locally: emerging opportunities for mycorrhizal research in South America. New Phytol 215(4):1306–1309CrossRefGoogle Scholar
  8. Bueno CG, Moora M, Gerz M, Davison J, Öpik M, Pärtel M, Helm A, Ronk A, Kühn I, Zobel M (2017b) Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecol Biogeogr 26(6):690–699CrossRefGoogle Scholar
  9. Bueno CG, Gerz M, Zobel M, Moora M (2018) Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza 29(1):1–11. CrossRefGoogle Scholar
  10. Cameron EK, Martins IS, Lavelle P, Mathieu J, Tedersoo L, Gottschall F, Guerra CA, Hines J, Patoine G, Siebert J, Winter M, Cesarz S, Delgado-Baquerizo M, Ferlian O, Fierer N, Kreft H, Lovejoy TE, Montanarella L, Orgiazzi A, Pereira HM, Phillips HRP, Settele J, Wall DH, Eisenhauer N (2018) Global gaps in soil biodiversity data. Nature Ecol Evol 2:1042–1043CrossRefGoogle Scholar
  11. Carey J (2016) News feature: Crucial role of belowground biodiversity. P Natl A Sci USA 113(28): 7682–7685CrossRefGoogle Scholar
  12. Castro SA, Camousseight A, Muñoz-Schick M, Jaksic FM (2006). Rodulfo Amando Philippi, el naturalista de mayor aporte al conocimiento taxonómico de la diversidad biológica de Chile. Rev Chil Hist Nat 79: 133–143. CrossRefGoogle Scholar
  13. Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406(1–2):154–160CrossRefGoogle Scholar
  14. Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 127(6251):970–973CrossRefGoogle Scholar
  15. Franco AA, de Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29(5–6): 897–903CrossRefGoogle Scholar
  16. Galeano G, Suárez S, Balslev H (1998) Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodivers Conserv 7(12):1563–1575CrossRefGoogle Scholar
  17. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefGoogle Scholar
  18. Godoy R, Silva-Flores P, Aguilera P, Marín C (2017) Microbial Interactions in the plant-soil continuum: Research results presented at the Workshop Mycorrhizal Symbiosis in the Southern Cone of South America. J Soil Sci Plant Nutr 17(4):1–3Google Scholar
  19. Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626–629CrossRefGoogle Scholar
  20. Kalwij JM, Robertson MP, Ronk A, Zobel M, Pärtel M (2014) Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. PloS One 9(1): e85306CrossRefGoogle Scholar
  21. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7): e1000100CrossRefGoogle Scholar
  22. Meyer C, Kreft H, Guralnick R, Jetz W (2015) Global priorities for an effective information basis of biodiversity distributions. Nature Commun 6: 8221CrossRefGoogle Scholar
  23. Montagne C (1850) Plantas Celulares. In: Gay C (ed) Historia Física y Política de Chile – Flora Chilena. Museo de Historia Natural de Santiago, Santiago, v7, p 1–515Google Scholar
  24. Moora M (2014) Mycorrhizal traits and plant communities: perspectives for integration. J Veg Sci 25(5):1126–1132CrossRefGoogle Scholar
  25. Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K (2018) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):D259-D264. CrossRefGoogle Scholar
  26. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188(1):223–241CrossRefGoogle Scholar
  27. Pereira HM, Belnap J, Brummitt N, Collen B, Ding H, Gonzalez-Espinosa M, Gregory RD, Honrado J, Jongman RHG, Julliard R, McRae L, Proença V, Rodrigues P, Opige M, Rodriguez JP, Schmeller DS, van Swaay C, Vieira C (2010) Global biodiversity monitoring. Front Ecol Environ 8(9): 459–460CrossRefGoogle Scholar
  28. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, Höft R, Hurtt G, Jetz W, Karp D, McGeoch MA, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M (2013) Essential biodiversity variables. Science 339(6117):277–278CrossRefGoogle Scholar
  29. Philippi F (1893) Die Pilze Chiles. Hedwigia 32:115–118Google Scholar
  30. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47(4):376–391CrossRefGoogle Scholar
  31. Richter DD, Billings SA, Groffman PM, Kelly EF, Lohse KA, McDowell WH, White TS, Anderson S, Baldocchi DD, Banwart S, Brantley S, Braun JJ, Brecheisen ZS, Cook CW, Hartnett HE, Hobbie SE, Gaillardet J, Jobbagy E, Jungkunst HF, Kazanski CE, Krishnaswamy J, Markewitz D, O’Neill K, Riebe CS, Schroeder P, Siebe C, Silver WL, Thompson A, Verhoef A, Zhang G (2018) Ideas and perspectives: Strengthening the biogeosciences in environmental research networks. Biogeosciences 15(15): 4815–4832CrossRefGoogle Scholar
  32. Rubiales D, Fernández Aparicio M, Wegmann K, Joel DM (2009) Revisiting strategies for reducing the seedbank of Orobanche and Phelipanche spp. Weed Res 49: 23–33CrossRefGoogle Scholar
  33. Ryan MG, Stape JL, Binkley D, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JM, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC (2010) Factors controlling Eucalyptus productivity: how water availability and stand structure alter production and carbon allocation. Forest Ecol Manag 259(9):1695–1703CrossRefGoogle Scholar
  34. Scholes RJ, Mace GM, Turner W, Geller GN, Jürgens N, Larigauderie A, Muchoney D, Walther BA, Mooney HA (2008) Toward a global biodiversity observing system. Science 321(5892):1044–1045CrossRefGoogle Scholar
  35. Scholes RJ, Walters M, Turak E, Saarenmaa H, Heip CHR, Tuama ÉÓ, Faith DP, Mooney HA, Ferrier S, Jongman RHG, Harrison IJ, Yahara T, Pereira HM, Larigauderie A, Geller G (2012) Building a global observing system for biodiversity. Curr Opin Env Sust 4(1):139–146CrossRefGoogle Scholar
  36. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105: 1413–1421CrossRefGoogle Scholar
  37. Singer R (1969) Mycoflora Australis. Beihefte Nova Hedwigia 29, Lehre: J. Cramer, LehreGoogle Scholar
  38. Singer R (1970) Phaeocollybia (Cortinariaceae, Basidiomycetes). Flora Neotropica 4: 1–13Google Scholar
  39. Singer R, Morello JH (1960) Ectotrophic forest tree mycorrhizae and forest communities. Ecology 41(3):549–551CrossRefGoogle Scholar
  40. Singer R, Moser M, Gamundí I, Ellas R, Sarmiento G (1965) Forest mycology and forest communities in South America. Mycopath Mycol Appl 26(2–3):129–191CrossRefGoogle Scholar
  41. Soudzilovskaia NA, Douma JC, Akhmetzhanova AA, van Bodegom PM, Cornwell WK, Moens EJ, Treseder KK, Tibbett M, Wang Y-P, Cornelissen JHC (2015) Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecol Biogeogr 24(3):371–382CrossRefGoogle Scholar
  42. Soudzilovskaia NA, Vaessen S, van’t Zelfde M, Raes N (2017) Global patterns of mycorrhizal distribution and their environmental drivers. In: Tedersoo L (ed) Biogeography of mycorrhizal symbiosis. Springer, Cham, p 223–235CrossRefGoogle Scholar
  43. Spegazzini C (1921) Mycetes Chilenos. Bol Acad Nac Cienc Córdoba 25: 1–124Google Scholar
  44. Sterkenburg E, Clemmensen KE, Ekblad A, Finlay RD, Lindahl BD (2018) Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. ISME J 12(9):2187–2197CrossRefGoogle Scholar
  45. Stürmer SL, Siqueira JO (2011) Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 21(4):255–267CrossRefGoogle Scholar
  46. Sulzbacher MA, Grebenc T, Giachini AJ, Baseia IG, Nouhra ER (2017) Hypogeous sequestrate fungi in South America–how well do we know them?. Symbiosis 71(1):9–17CrossRefGoogle Scholar
  47. Tallis H, Mooney H, Andelman S, Balvanera P, Cramer W, Karp D, Balvanera P, Cramer W, Karp D, Polasky S, Reyers B, Ricketts T, Running S, Thonicke K, Tietjen B, Walz A (2012) A global system for monitoring ecosystem service change. BioScience Mag 63(11):977–986CrossRefGoogle Scholar
  48. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz L. V, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346(6213): 1256688–1–10CrossRefGoogle Scholar
  49. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90(1):135–159CrossRefGoogle Scholar
  50. Toju H, Guimarães PR, Olesen JM, Thompson JN (2014) Assembly of complex plant–fungus networks. Nature Commun 5: e5273CrossRefGoogle Scholar
  51. van der Heijden MG, Martin FM, Selosse M, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423CrossRefGoogle Scholar
  52. van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N, De Vos B, Dietrich H-P, Eichhorn J, Gehrmann J, Grebenc T, Gweon HS, Hansen K, Jacob F, Kristöfel F, Lech P, Manninger M, Martin J, Meesenburg H, Merilä P, Nicolas M, Pavlenda P, Rautio P, Schaub M, Schröck H-W, Seidling W, Šrámek V, Thimonier A, Thomsen IM, Titeux H, Vanguelova E, Verstraeten A, Vesterdal L, Waldner P, Wijk S, Zhang Y, Žlindra D, Bidartondo MI (2018) Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558(7709):243–248CrossRefGoogle Scholar
  53. Waller LP, Felten J, Hiiesalu I, Vogt-Schilb H (2018) Sharing resources for mutual benefit: crosstalk between disciplines deepens the understanding of mycorrhizal symbioses across scales. New Phytol 217(1):29–32CrossRefGoogle Scholar
  54. Wetzel FT, Saarenmaa H, Regan E, Martin CS, Mergen P, Smirnova L, Tuama ÉÓ, García Camacho FA, Hoffmann A, Katrin Vohland K, Häuser CL (2015) The roles and contributions of Biodiversity Observation Networks (BONs) in better tracking progress to 2020 biodiversity targets: a European case study. Biodiversity 16(2–3):137–149CrossRefGoogle Scholar
  55. Wetzel FT, Bingham HC, Groom Q, Haase P, Kõljalg U, Kuhlmann M, Martin CS, Penev L, Robertson T, Saarenmaa H, Schmeller DS, Stoll S, Tonkin JD, Häuser CL (2018) Unlocking biodiversity data: Prioritization and filling the gaps in biodiversity observation data in Europe. Biol Conserv 221: 78–85CrossRefGoogle Scholar
  56. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand DH, Sninsky JL, White TJ (eds) PCR protocols: a guide to methods and applications. San Diego, Academic Press, p 315–322Google Scholar
  57. Wiens JJ (2007) Species delimitation: new approaches for discovering diversity. Syst Biol 56(6): 875–878CrossRefGoogle Scholar
  58. Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel L, Gęsiorska A, Mungai P, Azeez Lateef A, C. Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD (2018) Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Div 92(1): 43–129CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad de O’HigginsRancaguaChile
  2. 2.University of TartuTartuEstonia

Personalised recommendations