Advertisement

Biodiversity of Arbuscular Mycorrhizal Fungi in South America: A Review

  • M. Noelia Cofré
  • Florencia Soteras
  • M. del Rosario Iglesias
  • Silvana Velázquez
  • Camila Abarca
  • Lucía Risio
  • Emanuel Ontivero
  • Marta N. Cabello
  • Laura S. Domínguez
  • Mónica A. Lugo
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Arbuscular mycorrhizal fungi (AMF) are a cosmopolitan group of root symbionts associated with about 80% of earth plants. Current morphological and molecular classification describes around 300 and 1000 AMF taxa respectively. Despite the communities of AMF of many ecological divisions, biomes and ecosystems remain entirely unstudied, cumulative information has increased considerably over the last years, particularly for South America (SA). In this Chapter we reviewed the published literature of AMF morphological richness for SA in order to evaluate richness patterns across the ecological divisions of the region. The compiled data included 2187 records. The 186 morphological taxa identified in the literature evidenced an increasing interest in the study of these fungi in the region, yet with an uneven distribution among ecodivisions within the Amazonia, Atlantic forest, Caatinga and Chaco, which were the main research focus. Glomeraceae species predominated in all ecodivisions with Acaulosporaceae and Gigasporaceae alternated as the second predominant family. It is difficult to draw broad scale conclusions about richness changes among ecological divisions in SA as there are many that remain unstudied and others poorly sampled (e.g. Guianan lowlands and Patagonia respectively). Therefore, further studies of these ecosystems should be encouraged.

Keywords

Glomeromycota Morphospecies richness South America Ecological divisions 

References

  1. Aguilera P, Cornejo P, Borie F, Barea JM, von Baer E, Oehl F (2014) Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an Andosol with high aluminum level. Agr Ecosyst Environ 186:178–184CrossRefGoogle Scholar
  2. Aguilera P, Marín C, Oehl F, Godoy R, Borie F, Cornejo P (2017) Selection of aluminum tolerant cereal genotypes strongly influences the arbuscular mycorrhizal fungal communities in an acidic Andosol. Agr Ecosyst Environ 246:86–93CrossRefGoogle Scholar
  3. Aidar MP, Carrenho R, Joly CA (2004) Aspects of arbuscular mycorrhizal fungi in an Atlantic Forest chronosequence Parque Estadual Turístico do Alto Ribeira (PETAR), SP. Biota Neotrop 4(2):1–13CrossRefGoogle Scholar
  4. Albuquerque PP (2008) Diversidade de Glomeromycetes e atividade microbiana em solos sob vegetação nativa do semi-árido de Pernambuco, Doctoral dissertation, PhD Thesis, Universidade Federal de Pernambuco, Recife, BrazilGoogle Scholar
  5. Angulo-Veizaga WV, García-Apaza E (2014) Baccharis incarum and fungus Arbuscular Mycorrhizal symbiotic relationship for land fallow in the Bolivian highland. CienciAgro 3(1):51–58Google Scholar
  6. Becerra A, Cabello M (2008) Hongos micorrícico arbusculares presentes en bosques de Alnus acuminata (Betulaceae) de la Yunga Argentina. B Soc Argent Bot 43(3–4):197–203Google Scholar
  7. Becerra A, Bartoloni J, Cofré N, Soteras F, Cabello M (2014) Arbuscular mycorrhizal fungi in saline soils: vertical distribution at different soil depths. Braz J Microbiol 45:585–594PubMedPubMedCentralCrossRefGoogle Scholar
  8. Becerra A, Cabello MN, Bartolini NJ (2011) Native arbuscular mycorrhizal fungi in the Yungas forest, Argentina. Mycologia 103:273–279PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sersic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392PubMedCrossRefPubMedCentralGoogle Scholar
  10. Błaszkowski J (2012) Glomeromycota. W. Szafer Institute of Botany, Polish Academy of SciencesGoogle Scholar
  11. Bonfim JA, Vasconcellos RLF, Stürmer SL, Cardoso EJBN (2013) Arbuscular mycorrhizal fungi in the Brazilian Atlantic forest: A gradient of environmental restoration. Appl Soil Ecol 71:7–14CrossRefGoogle Scholar
  12. Bueno CG, Marín C, Silva-Flores P, Aguilera P, Godoy R (2017) Think globally, research locally: emerging opportunities for mycorrhizal research in South America. New Phytol 215:1306–1309CrossRefGoogle Scholar
  13. Cabello MN (1994) Glomus antarcticum sp. nov., a vesicular-arbuscular mycorrhizal fungus from Antarctica. Mycotaxon 51:123–128Google Scholar
  14. Cabello MN (1997) Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiol Ecol 22 (3):233–236CrossRefGoogle Scholar
  15. Carrenho, R, Silva ES, Trufem SFB, Bononi VLR (2001) Successive cultivation of maize and agricultural practices on root colonization, number of spores and species of arbuscular mycorrhizal fungi. Braz J Microbiol 32(4):262–270CrossRefGoogle Scholar
  16. Casanova-Katny MA, Torres-Mellado GA, Palfner G, Cavieres LA (2011) The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species. Mycorrhiza 21(7):613–622PubMedCrossRefPubMedCentralGoogle Scholar
  17. Castillo C, Borie F, Godoy R, Rubio R, Sieverding E (2005) Diversity of mycorrhizal plant species and arbuscular mycorrhizal fungi in evergreen forest, deciduous forest and grassland ecosystems of Southern Chile. J Appl Bot Food Qual 80:40–47Google Scholar
  18. Castillo CG, Rubio R, Rouanet JL, Borie F (2006) Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fertil Soils 43(1):83–92CrossRefGoogle Scholar
  19. Castillo C, Rubio R, Borie F, Sieverding E (2010) Diversity of arbuscular mycorrhizal fungi in horticultural production systems of southern Chile. J Soil Sci Plant Nut 10(4):407–413CrossRefGoogle Scholar
  20. Castillo CG, Oehl F, Sieverding E (2016) Arbuscular mycorrhizal fungal diversity in wheat agro-ecosystems in Southern Chile and effects of seed treatment with natural products. J Soil Sci Plant Nut 16(4):967–978Google Scholar
  21. Chaudhary VB, Lau MK, Johnson NC (2008) Macroecology of Microbes – Biogeography of the Glomeromycota. In: Varma A (eds) Mycorrhiza. Springer, Berlin, HeidelbergGoogle Scholar
  22. Cofré MN, Ferrari AE, Becerra A, Domínguez L, Wall LG, Urcelay C (2017) Effects of cropping systems under no-till agriculture on arbuscular mycorrhizal fungi in Argentinean Pampas. Soil Use Manage 33:364–378CrossRefGoogle Scholar
  23. Colombo RP, Fernandez Bidondo L, Silvani VA, Carbonetto MB, Rascovan N, Bompadre MJ, Pergola M, Cuenca G, Godeas AM (2014) Diversity of arbuscular mycorrhizal fungi in soil from the Pampa Ondulada, Argentina, assessed by pyrosequencing and morphological techniques. Can J Microbiol 60: 819–827.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Copley J. 2000. Ecology goes underground. Nature 406:452–454PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cordoba AS, de Mendonça MM, Stürmer SL, Rygiewicz PT (2001) Diversity of arbuscular mycorrhizal fungi along a sand dune stabilization gradient: A case study at Praia da Joaquina, Ilha de Santa Catarina, South Brazil. Mycoscience 42(4):379–387CrossRefGoogle Scholar
  26. Covacevich F, Marino M A, Echeverrica H E (2006) The phosphorus source determines the arbuscular mycorrhizal potential and the native mycorrhizal colonization of tall fescue and wheatgrass. Eur J Soil Biol 42:127–138CrossRefGoogle Scholar
  27. Coutinho ES, Fernandes GW, Berbara RLL, Valério HM, Goto BT (2015) Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 25(8):627–638PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cuenca G, Herrera-Peraza R (2008) Scutellospora striata sp. nov., a newly described glomeromycotan fungus from La Gran Sabana, Venezuela. Mycotaxon 105(6):79–87Google Scholar
  29. Cuenca G, Lovera M (1992) Vesicular-arbuscular mycor¬rhizae in disturbed and revegetated sites from La Gran Sabana, Venezuela. Canadian Journal of Botany 70: 73–79CrossRefGoogle Scholar
  30. Cuenca G, Meneses E (1996) Diversity patterns of arbuscular mycorrhizal fungi associated with cacao in Venezuela. Plant Soil 183(2):315–322CrossRefGoogle Scholar
  31. Cuenca G, De Andrade Z, Escalante G (1998) Diversity of Glomalean spores from natural disturbed and revegetated communities growing on nutrient-poor tropical soils. Soil Biology and Biochemistry 30: 711–719CrossRefGoogle Scholar
  32. de Carvalho F, De Souza FA, Carrenho R, de Souza Moreira FM, da Conçeição Jesus E, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19CrossRefGoogle Scholar
  33. da Silva DKA, de Oliveira Freitas N, Cuenca G, Maia LC, Oehl F (2008) Scutellospora pernambucana, a new fungal species in the Glomeromycetes with a diagnostic germination orb. Mycotaxon 106(1):361–370Google Scholar
  34. da Silva DKA, Pereira CMR, de Souza RG, da Silva GA, Oehl F, Maia LC (2012) Diversity of arbuscular mycorrhizal fungi in restinga and dunes areas in Brazilian Northeast. Biodivers Conserv 21(9):2361–2373CrossRefGoogle Scholar
  35. da Silva GA, Trufem SFB, Júnior OJS, Maia LC (2005) Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza 15(1):47–53PubMedCrossRefGoogle Scholar
  36. da Silva IR, de Mello CMA, Neto RAF, da Silva DKA, de Melo AL, Oehl F, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Appl Soil Ecol 84:166–175CrossRefGoogle Scholar
  37. de Mello CMA (2011) Fungos micorrízicos arbusculares do núcleo de desertificação de Cabrobó-PE, Doctoral dissertation, Dissertação de mestrado, Programa de Pós-graduação em Biologia de Fungos, Universidade Federal de Pernambuco, Recife p 66Google Scholar
  38. de Mello CMA, da Silva GA, de Assis DMA, de Pontes JS, de Almeida Ferreira AC, Porto Carneiro LM, Evangelista Vieira HE, Costa Maia L, Oehl F (2013) Paraglomus pernambucanum sp. nov. and Paraglomus bolivianum comb. nov., and biogeographic distribution of Paraglomus and Pacispora. J Appl Bot Food Qual 86:113–125Google Scholar
  39. de Oliveira Freitas N (2006) Aspectos da associação de fungos micorrízicos arbusculares (Glomeromycota) em videira (Vitis sp.). Dissertação (Mestrado). Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco, RecifeGoogle Scholar
  40. de Oliveira Freitas R, Buscardo E, Nagy L, dos Santos Maciel AB, Carrenho R, Luizão RC (2014) Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest. Mycorrhiza 24(1):21–32CrossRefGoogle Scholar
  41. Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu L, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 970–973PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dhillion SS, Vidiella PE, Aquilera LE, Friese, CF, De Leon E, Armesto JJ, Zak JC (1995) Mycorrhizal plants and fungi in the fog-free Pacific coastal desert of Chile. Mycorrhiza 5:381–386CrossRefGoogle Scholar
  43. Dodd JC, Arias I, Koomen I, Hayman DS (1990) The management of populations of vesicular-arbuscular mycorrhizal fungi in acid-infertile soils of a savanna ecosystem. Plant Soil 122:229–240CrossRefGoogle Scholar
  44. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366Google Scholar
  45. Escudero V, Mendoza R (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperature grassland along a wide hydrologic gradient. Mycorrhiza 15(4):291–299PubMedCrossRefGoogle Scholar
  46. Fernandes A, Siqueira JO (1989) Micorrizas vesicular-arbusculares em cafeeiros da região Sul do Estado de Minas Gerais. Pesq Agropec Bras 24(12):1489–1498Google Scholar
  47. Fittkau EJ (1969) The fauna of South America. In: Fittkau EJ, Illies J, Klinge H, Schwabe GH, Sioli H (eds) Biogeography and ecology in South America, Junk, La Haya, p 624–650Google Scholar
  48. Fontenla S, Godoy R, Rosso P, Havrylenko M (1998) Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza 8:29–33CrossRefGoogle Scholar
  49. França SC, Gomes-da-Costa SM, Silveira AP (2007) Microbial activity and arbuscular mycorrhizal fungal diversity in conventional and organic citrus orchards. Biol Agric Horticul 25(2):91–102CrossRefGoogle Scholar
  50. Frioni L, Minasian H, Volfovicz R (1999) Arbuscular mycorrhizae and ectomycorrhizae in native tree legumes in Uruguay. Forest Ecol Manag 115(1):41–47CrossRefGoogle Scholar
  51. Furrazola E, Goto BT, Silva GAD, Torres-Arias Y, Morais T, Pereira de Lima CE, de Almeida Ferreira AC, Costa ML, Sieverding, E, Oehl F (2013) Acaulospora herrerae, a new pitted species in the Glomeromycetes from Cuba and Brazil. Nova Hedwigia 97(3–4):401–413CrossRefGoogle Scholar
  52. García S, Pezzani F, Rodríguez-Blanco A (2017) Long-term phosphorus fertilization effects on arbuscular mycorrhizal fungal diversity in Uruguayan grasses. J Soil Sci Plant Nut 17(4):1013–1027CrossRefGoogle Scholar
  53. Gómez-Carabalí A, Rao IM, Tupac Otero J (2011) Influence of fertilization, season, and forage species in presence of arbuscular mycorrhizae in a degraded Andisoil of Colombia. Acta Agron 60:84–92Google Scholar
  54. Goto BT, Maia LC (2005) Sporocarpic species of arbuscular mycorrhizal fungi (Glomeromycota), with a new report from Brazil. Acta Bot Brasil 19(3):633–637CrossRefGoogle Scholar
  55. Goto BT, Maia LC, da Silva GA, Oehl F (2009). Racocetra intraornata, a new species in the Glomeromycetes with a unique spore wall structure. Mycotaxon 109(1):483–491CrossRefGoogle Scholar
  56. Goto, BT, Silva GAD, Maia LC, Oehl F (2010a) Dentiscutata colliculosa, a new species in the Glomeromycetes from Northeastern Brazil with colliculate spore ornamentation. Nova Hedwigia 90(3–4):383–393CrossRefGoogle Scholar
  57. Goto BT, da Silva GA, Yano-Melo AM, Maia LC (2010b) Checklist of the arbuscular mycorrhizal fungi (Glomeromycota) in the Brazilian semiarid. Mycotaxon 113:251–254CrossRefGoogle Scholar
  58. Greer FE (ed) (2014) Dry Forests: Ecology, Species Diversity and Sustainable Management. Nova Science Publ, United States of AmericaGoogle Scholar
  59. Grilli G, Urcelay C, Galetto L (2012) Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecol 213:155–165CrossRefGoogle Scholar
  60. Grilli G, Urcelay C, Galetto L, Davison J, Vasar M, Saks Ü, Jairus T, Öpik M (2015) The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process. Environ Microbiol 17 (8):2709–2720CrossRefGoogle Scholar
  61. Herrera-Peraza RA, Cuenca G, Walker C (2001) Scutellospora crenulata, a new species of Glomales from La Gran Sabana, Venezuela. Can J Botany 79(6):674–678Google Scholar
  62. Herrera-Peraza RA, Montilla M, Furrazola E, Ferrer RL, Morales S, Monasterio M (2016) Presencia y distribución de representantes hipógeos de la clase Glomeromycetes (hongos micorrizógenos VA) en ecosistemas andinos venezolanos. Acta Bot Cubana 215(2):196–217Google Scholar
  63. Hulsen T, De Vlieg J, Alkema W (2008) BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9:488PubMedPubMedCentralCrossRefGoogle Scholar
  64. Janos DP, Sahley CT, Emmons LH (1995) Rodent Dispersal of Vesicular-Arbuscular Mycorrhizal Fungi in Amazonian Peru. Ecology 76(6): 1852–1859CrossRefGoogle Scholar
  65. Jobim K, Santos Oliveira BI, Goto BT (2016) Checklist of the Glomeromycota in the Brazilian Savanna. Mycotaxon 131:255CrossRefGoogle Scholar
  66. Jobim K, Vista XM, Goto BT (2018) Updates on the knowledge of arbuscular mycorrhizal fungi (Glomeromycotina) in the Atlantic Forest biome – an example of very high species richness in Brazilian biomes. Mycotaxon 133 (1)CrossRefGoogle Scholar
  67. Josse C, Navarro G, Comer P, Evans R, Faber-Langendoen D, Fellows M, Kittel G, Menard S, Pyne M, Reid M, Schulz K, Snow K, Teague J (2003). Ecological Systems of Latin America and the Caribbean: A Working Classification of Terrestrial Systems. Nature Serve, Arlington, VirginiaGoogle Scholar
  68. Kelt DA, Meserve P (2014) Status and challenges for conservation of small mammal assemblages in South America. Biol Rev 89:705–722PubMedCrossRefGoogle Scholar
  69. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303CrossRefGoogle Scholar
  70. Krüger C (2013) Arbuscular mycorrhizal fungi for reforestation of native tropical trees in the Andes of South Ecuador (Doctoral dissertation, lmu)Google Scholar
  71. Lavina EL, Fauth G (2011) Evolução geológica da América do Sul nos últimos 250 milhões de anos. In: Carvalho JB, Almeida EA (eds) Biogeografia da America do Sul, padrões and procesos. Roca, São Paulo, Brasil, p 3–13Google Scholar
  72. Leal PL, Stürmer SL, Siqueira JO (2009) Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from soils under different land use systems in the Amazon, Brazil. Braz J Microbiol 40(1):111–121PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lemos IB (2008) Simbiose micorrízica arbuscular em porta enxertos de videira (Vitis spp.). Dissertação (Mestrado). Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco, RecifeGoogle Scholar
  74. Longo S, Nouhra E, Goto BT, Berbara RL, Urcelay C (2014) Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. For Ecol Manag 315:86–94CrossRefGoogle Scholar
  75. Lugo MA, Cabello MN (1999) Acaulosporaceae (Glomales, Zygomycetes) en pastizales autóctonos del centro de Argentina. Darwiniana 37(3–4): 323–332Google Scholar
  76. Lugo MA, Cabello MN (2002) Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94 (4):579–586PubMedPubMedCentralGoogle Scholar
  77. Lugo MA, Anton AN, Cabello MN (2005) Arbuscular mycorrhizas in the Larrea divaricata shrubland at arid “Chaco”, Central Argentina. J Agric Tech 1:163–178Google Scholar
  78. Lugo MA, Ferrero MA, Menoyo E, Estévez MC, Siñeriz F, Anton AM (2008) Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb Ecol 55:705–713PubMedCrossRefGoogle Scholar
  79. Marín C, Aguilera P, Cornejo P, Godoy R, Oehl F, Palfner G, Boy J (2016) Arbuscular mycorrhizal assemblages along contrasting Andean forests of Southern Chile. J Soil Sci Plant Nut 16(4):916–929Google Scholar
  80. Marín C, Aguilera P, Oehl F, Godoy R (2017) Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. J Soil Sci Plant Nut 17(4):966–984CrossRefGoogle Scholar
  81. Medina J, Cornejo P, Borie F, Meier S, Palenzuela J, Vieira HEE, Ferreira ACA, Silva GAl, Sánchez-Castro I, Oehl F (2014) Corymbiglomus pacificum, a new glomeromycete from a saline lakeshore in Chile. Mycotaxon127 (11):173–183CrossRefGoogle Scholar
  82. Medina J, Meier S, Rubio R, Curaqueo G, Borie F, Aguilera P, Oehl F, Cornejo P (2015) Arbuscular mycorrhizal status of pioneer plants from the mouth of lake Budi, Araucanía Region, Chile. J Soil Sci Plant Nut 15(1):142–152Google Scholar
  83. Meier S, Borie F, Curaqueo G, Bolan N, Cornejo P (2012) Effects of arbuscular mycorrhizal inoculation on metallophyte and agricultural plants growing at increasing copper levels. Appl Soil Ecol 61:280–287CrossRefGoogle Scholar
  84. Mendoza RE, Goldmann V, Rivas J, Escudero V, Pagani E, Collantes M, Marbán L (2002) Poblaciones de hongos micorrícicos arbusculares en relación con las propiedades del suelo y de la planta hospedante en pastizales de Tierra del Fuego. Ecolo Aust 12:105–116Google Scholar
  85. Menéndez AB, Scervino JM, Godeas AM (2001) Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol Fertil Soils 33:373–381CrossRefGoogle Scholar
  86. Menoyo E, Renison D, Becerra A (2009) Arbuscular mycorrhizas and performance of Polylepis australis trees in relation to livestock density. For Ecol Manag 258(12):2676–2682CrossRefGoogle Scholar
  87. Mergulhão ACES (2007) Aspectos Ecológicos e Moleculares de Fungos Micorrízicos Arbusculares. Recife, UFP, BrazilGoogle Scholar
  88. Moreira M, Baretta D, Tsai SM, Cardoso EJBN (2009) Arbuscular mycorrhizal fungal communities in native and in replanted Araucaria forest. Sci Agric 66(5):677–684CrossRefGoogle Scholar
  89. Morton J, Bentivenga S, Wheeler W (1993). Germ plasm in the International Collection of Arbuscular and Vesicular-Arbuscular Mycorrhizal Fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48:491–528Google Scholar
  90. Oehl F, Sieverding E (2004) Pacispora, a new vesicular-arbuscular mycorrhizal fungal genus in the Glomeromycetes. J Appl Bot Food Qual 78:72–82Google Scholar
  91. Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738CrossRefGoogle Scholar
  92. Oehl F, da Silva GA, Goto BT, Sieverding E (2011a) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116:75–120CrossRefGoogle Scholar
  93. Oehl F, Sieverding E, Palenzuela J, Ineichen K, da Silva GA (2011b) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199PubMedPubMedCentralCrossRefGoogle Scholar
  94. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241CrossRefGoogle Scholar
  95. Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, Põlme S, Reier Ü, Saks Ü, Schimann H, Thiéry O, Vasar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430CrossRefGoogle Scholar
  96. Pagano MC, Zandavalli RB, Araújo FS (2013) Biodiversity of arbuscular mycorrhizas in three vegetational types from the semiarid of Ceará State, Brazil. Appl Soil Ecol 67:37–46CrossRefGoogle Scholar
  97. Palfner G (2001) Taxonomische studien an ektomykorrhizen aus den nothofagus-wáldern mittelsudchiles: mit Tabellen in Text/Götz Palfner. Berlin, Germany: J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, Bibliotheca MycologicaGoogle Scholar
  98. Pärtel M, Bennett JA, Zobel M (2016) Macroecology of biodiversity: disentangling local and regional effects. New Phytol 211:404–410PubMedCrossRefPubMedCentralGoogle Scholar
  99. Pereira CMR, da Silva DKA, de Almeida Ferreira AC, Goto BT, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi in Atlantic forest areas under different land uses. Agr Ecosyst Environ 185:245–252CrossRefGoogle Scholar
  100. Pontes JS, Oehl F, Marinho F, Coyne D, Silva DKAD, Yano-Melo AM, Maia LC (2017) Diversity of arbuscular mycorrhizal fungi in Brazil’s Caatinga and experimental agroecosystems. Biotropica 49(3):413–427CrossRefGoogle Scholar
  101. Prado DE, Gibbs PE (1993) Patterns of species distribution in the dry seasonal forests of South America. Ann Missouri Bot Gard 80 (4):902–927CrossRefGoogle Scholar
  102. Purin S, Klauberg Filho O, Stürmer SL (2006) Mycorrhizae activity and diversity in conventional and organic apple orchards from Brazil. Soil Biol Biochem 38(7):1831–1839CrossRefGoogle Scholar
  103. Rabatin SC, Stinner BR, Paoletti MG (1993) Vesicular-arbuscular mycorrhizal fungi, particularly Glomus tenue, in Venezuelan bromeliad epiphytes. Mycorrhiza 4(1):17–20CrossRefGoogle Scholar
  104. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  105. Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531CrossRefGoogle Scholar
  106. Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7(8):740–754CrossRefGoogle Scholar
  107. Rivero-Mega MS, Crespo EM, Molina MG, Lugo MA (2014) Diversidad diferencial de esporas de Glomeromycota en la rizosfera de Bromeliáceas nativas del Parque Nacional Sierra de Las Quijadas (San Luis, Argentina) Bol Soc Argen Bot 49 (3):317–325Google Scholar
  108. Roberts DW (2013) labdsv: ordination and multivariate analysis for ecology package. Version 1.6–1. http://cran.r project.org/web/packages/labdsv
  109. Robinson-Boyer L, Grzyb I, Jeffries P (2009) Shifting the balance from qualitative to quantitative analysis of arbuscular mycorrhizal communities in field soils. Fungal Ecol 2:1–9CrossRefGoogle Scholar
  110. Rojas-Mego KC, Elizarbe-Melgar C, Gárate-Díaz MH, Ayala-Montejo D, Pedro RC, Sieverding, E (2014) Hongos de micorriza arbuscular en tres agroecosistemas de cacao (Theobroma cacao L.) en la amazonía peruana. Folia Amazónica 23(2):149–156CrossRefGoogle Scholar
  111. Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266PubMedCrossRefPubMedCentralGoogle Scholar
  112. Säle V, Aguilera P, Laczko E, Mäder P, Berner A, Zihlmann U, van der Heijden MGA, Oehl F (2015) Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol Biochem 84:38–52CrossRefGoogle Scholar
  113. Schalamuk S, Velazquez S, Chidichimo H, Cabello M (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98:16–22PubMedCrossRefPubMedCentralGoogle Scholar
  114. Schenck NC, Joyce L, Spain E, Sieverding E, Howeler RH (1984) Several new and unreported vesicular-arbuscular mycorrhizal fungi (Endogonaceae) from Colombia. Mycologia 76:685–699CrossRefGoogle Scholar
  115. Schneider J, Stürmer SL, Guilherme LRG, de Souza Moreira FM, de Sousa Soares CRF (2013) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater 262:1105–1115PubMedCrossRefPubMedCentralGoogle Scholar
  116. Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Gloucester, in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich and Oregon State UniversityGoogle Scholar
  117. Senés-Guerrero C, Schüßler A (2016) A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers 77:317–333CrossRefGoogle Scholar
  118. Sieverding E, Howeler RH (1985) Influence of species of VA mycorrhizal fungi on cassava yield response to phosphorus fertilization. Plant Soil 88:213–221CrossRefGoogle Scholar
  119. Sieverding E, Toro TS (1987) Acaulospora denticulata sp. nov. and Acaulospora rehmii sp. nov. (Endogonaceae) with ornamented spore walls. Angewandte Botanik 61:217–223Google Scholar
  120. Silva LX, Figueiredo MVB, Silva GA, Goto BT, Oliveira JP, Burity HA (2007) Fungos micorrízicos arbusculares em áreas de plantio de leucena e sabiá no estado de Pernambuco. Rev Árvore 31:427–435CrossRefGoogle Scholar
  121. Siqueira JO, Colozzi-Filho A, Oliveira E, Fernandes AB, Florence ML (1987) Micorrizas vesicular-arbusculares em mudas de cafeeiro produzidas no sul do estado de Minas Gerais. Pesq Agropec Bras 22(1):31–38Google Scholar
  122. Siqueira JO, Colozzi Filho A, Oliveira E (1989) Ocorrência de micorrizas vesicular-arbusculares em agro e ecossistemas do estado de Minas Gerais. Pesq Agrop Bras 24:1499–1506Google Scholar
  123. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 2nd ed. Academic Press Ltd, LondonGoogle Scholar
  124. Soteras F, Becerra A, Cofré N, Bartoloni J, Cabello M (2012) Arbuscular mycorrhizal fungal species in saline environments of Central Argentina: seasonal variation and distribution of spores at different soil depths. Sydowia 64:301–311Google Scholar
  125. Soteras F, Renison D, Becerra AG (2014) Restoration of high altitude forests in an area affected by a wildfire: Polylepis australis Bitt. seedlings performance after soil inoculation. Trees 28 (1):173–182CrossRefGoogle Scholar
  126. Soteras F, Grilli G, Cofré N, Marro N, Becerra A (2015) Arbuscular mycorrhizal fungal composition in high montane forests with different disturbance histories in Central Argentina. Appl Soil Ecol 85:30–37CrossRefGoogle Scholar
  127. Soteras, F, Moreira, BC, Grilli G, Pastor N, Mendes F C, Mendes DR, Reninson D, Megumi Kasuya NC, de Souza FA, Becerra A (2016) Arbuscular mycorrhizal fungal diversity in rhizosphere spores versus roots of an endangered endemic tree from Argentina: Is fungal diversity similar among forest disturbance types?. Appl Soil Ecol 98:272–277CrossRefGoogle Scholar
  128. Sousa CDS, Menezes RSC, Sampaio EVDSB, Lima FDS, Oehl F, Maia LC (2013) Arbuscular mycorrhizal fungi within agroforestry and traditional land use systems in semi-arid Northeast Brazil. Acta Scientiarum. Agronomy 35(3):307–314CrossRefGoogle Scholar
  129. Souza RG, Silva DKA, Mello CMA, Goto BT, Silva FSB, Sampaio EVSB, Maia, LC (2013) Arbuscular mycorrhizal fungi in revegetated mined dunes. Land Degrad Dev 24(2):147–155CrossRefGoogle Scholar
  130. Spain JL, Sieverding E, Oehl F (2006) Appendicispora: a new genus in the arbuscular mycorrhiza-forming Glomeromycetes, with a discussion of the genus Archaeospora. Mycotaxon 97:163–182Google Scholar
  131. Stürmer SL, Bellei MM (1994) Composition and seasonal variation of spore populations of arbuscular mycorrhizal fungi in dune soils on the island of Santa Catarina. Brazil. Can J Botany 72(3):359–363CrossRefGoogle Scholar
  132. Stürmer SL, Siqueira JO (2011) Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in western Brazilian Amazon. Mycorrhiza 21(4):255–67CrossRefGoogle Scholar
  133. Stürmer SL, Bever JD, Morton JB (2018) Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza 28:587–603CrossRefGoogle Scholar
  134. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688–1–10CrossRefGoogle Scholar
  135. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90(1):135–159CrossRefGoogle Scholar
  136. Urcelay C, Diaz S, Gurvich DE, Chapin FS III, Cuevas E, Domínguez LS (2009) Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. J Ecol 97:1291–1301CrossRefGoogle Scholar
  137. Vasconcellos RL, Bonfim JA, Baretta D, Cardoso EJ (2016) Arbuscular mycorrhizal fungi and glomalin-related soil protein as potential indicators of soil quality in a recuperation gradient of the Atlantic forest in Brazil. Land Degrad Dev 27(2):325–334CrossRefGoogle Scholar
  138. Veblen TT, Young KR, Orme AR (eds) (2015) The physical geography of South America. Oxford University PressGoogle Scholar
  139. Velázquez S, Cabello M (2011) Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from El Palmar National Park soils. Eur J Soil Biol 47:230–235CrossRefGoogle Scholar
  140. Velázquez M, Cabello M, Barrera M (2013) Composition and structure of arbuscular-mycorrhizal communities in El Palmar National Park, Argentina. Mycologia 105(3):509–520CrossRefGoogle Scholar
  141. Velázquez MS, Stürmer SL, Bruzone C, Fontenla S, Barrera M, Cabello M (2016) Occurrence of arbuscular mycorrhizal fungi in high altitude sites of the Patagonian Altoandina region in Nahuel Huapi National Park (Argentina). Acta Bot Bras 30(4):521–531CrossRefGoogle Scholar
  142. Vestberg M, Cardoso M, Mårtensson A (1999) Occurrence of arbuscular mycorrhizal fungi in different cropping systems at Cochabamba, Bolivia. Agric Food Sci Finl 8:309–318CrossRefGoogle Scholar
  143. Viglizzo EF, Frank FC, Carreno LV, Jobbagy EG, Pereyra H, Clatt J, Pincen D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biol 17:959–973CrossRefGoogle Scholar
  144. Vilcatoma-Medina C, Kaschuk G, Zanette F (2018) Colonization and spore richness of arbuscular mycorrhizal fungi in Araucaria nursery seedlings in Curitiba, Brazil. Int J Agron Vol 2018, Article ID 5294295, 6 pages  https://doi.org/10.1155/2018/5294295 CrossRefGoogle Scholar
  145. Villagrán C, Hinojosa LF (1997) Historia de los bosques del sur de Sudamérica, II: análisis fitogeográfico. Rev Chil Hist Nat 70:241–267Google Scholar
  146. Walker C, Cuenca G, Sánchez F (1998) Scutellospora spinosissima sp. nov., a newly described glomalean fungus from acidic, low nutrient plant communities in Venezuela. Ann Bot London 82(6):721–725CrossRefGoogle Scholar
  147. Walker C, Gollotte A, Redecker D (2018) A new genus, Planticonsortium (Mucoromycotina), and new combination (P. tenue), for the fine root endophyte, Glomus tenue (basionym Rhizophagus tenuis). Mycorrhiza 28:213–219CrossRefGoogle Scholar
  148. Wetzel K, Silva G, Matczinski U, Oehl F, Fester T (2014). Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol Biochem 72:88–96CrossRefGoogle Scholar
  149. Young KR, Berry PE, Veblen TT (2007) Flora and Vegetation. In: Young KR, Berry PE, Veblen TT (eds)The Physical Geography of South America, Oxford University Press, UKGoogle Scholar
  150. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84(8):2042–2050CrossRefGoogle Scholar
  151. Zangaro W, Rostirola LV, de Souza PB, de Almeida Alves R, Lescano LEAM, Rondina ABL, Nogueira MA, Carrenho R (2013) Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 23(3):221–233CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Noelia Cofré
    • 1
  • Florencia Soteras
    • 2
  • M. del Rosario Iglesias
    • 3
  • Silvana Velázquez
    • 4
  • Camila Abarca
    • 4
  • Lucía Risio
    • 5
  • Emanuel Ontivero
    • 5
  • Marta N. Cabello
    • 4
  • Laura S. Domínguez
    • 1
  • Mónica A. Lugo
    • 6
  1. 1.Laboratorio de Micología, IMBIV, CONICETUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICETUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.IMBIV, CONICETUniversidad Nacional de CórdobaCórdobaArgentina
  4. 4.Instituto de Botánica Spegazzini, Universidad Nacional de La Plata-CICPBALa PlataArgentina
  5. 5.MICODIF-IMIBIO-CONICETUniversidad Nacional de San LuisSan LuisArgentina
  6. 6.Biological Sciences, National University of San LuisGrupo MICODIF (Micología, Diversidad e Interacciones Fúngicas)/IMIBIO (Instituto Multidisciplinario de Investigaciones Biológicas)-CONICET-CCT SLSan LuisArgentina

Personalised recommendations