Latitudinal Distribution of Mycorrhizal Types in Native and Alien Trees in Montane Ecosystems from Southern South America

  • Carlos UrcelayEmail author
  • Paula A. Tecco
  • Valentina Borda
  • Silvana Longo
Part of the Fungal Biology book series (FUNGBIO)


Biological invasions constitute a global environmental threat that rapidly alters natural communities and ecosystem functioning. A way to understand the success of alien trees in novel ecosystems is by comparing their ecological strategies with those of natives. Plants often associate with mycorrhizal fungi in their roots to enhance nutrient acquisition. According to fungal identity, morphological structures and functioning, different types of mycorrhizas can be distinguished. Despite the phylogenetic imprints that often characterize mycorrhizal distribution among plants, it is well known that mycorrhizal types vary across environmental gradients, vegetation types and plant life forms. Then, at the global scale, the different types of mycorrhizas are not randomly distributed across biomes but rather related to environmental variables. In this chapter we examine the patterns of mycorrhizal distribution in native and alien tree species occurring in contrasting montane ecosystems across a broad latitudinal gradient in South America. We analyze whether patterns of mycorrhizal distribution in alien trees tend to converge or diverge with those in observed in natives. From the analyses we conclude that patterns of mycorrhizal distribution in alien and native trees occurring in montane ecosystems from subtropical to temperate regions, roughly follow those predicted by models of mycorrhizal distribution at global scales. This is seemingly in line with the idea of broad scale environmental filters driving predominance of convergences in the functional strategies of coexisting tree species along these mountain biomes. Nonetheless, ECM in aliens is in higher proportion compared to natives, particularly in temperate forests. Results of this chapter suggest that mycorrhizal associations have an unambiguous role in tree invasions in montane forests across different climates. However, they also reveal that the relative importance of each mycorrhizal type in each ecosystem remains to be determined.


Biological invasions Mycorrhizal types Neotropical forests Antarctic forests Montane rain forest Seasonally dry montane forest Temperate forest 



This work was supported by Secyt (UNC). We thank CONICET and the Universidad Nacional de Córdoba (Argentina), both of which supported the facilities used in this investigation. G. Robledo provided the map. A. Cingolani kindly provided climate data.


  1. Aragón R, Morales JM (2003) Species composition and invasion in NW Argentinian secondary forests: effects of land use history, environment and landscape. Journal of Vegetation Science 14: 195–204CrossRefGoogle Scholar
  2. Becerra AG, Pritsch K, Arrigo N, Palma M, Bartoloni N (2005a). Ectomycorrhizal colonization of Alnus acuminata Kunth in northwestern Argentina in relation to season and soil parameters. Annals of Forest Science 62: 325–332CrossRefGoogle Scholar
  3. Becerra A, Zak MR, Horton TR, Micolini J (2005b). Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza 15: 525–531PubMedCrossRefPubMedCentralGoogle Scholar
  4. Becerra AG, Nouhra ER, Silva MP, McKay D (2009) Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina. Mycoscience 50: 343–352CrossRefGoogle Scholar
  5. Brundrett MC (1991) Mycorrhizas in natural ecosystems. In: Macfayden A, Begon M, Fitter AH (eds) Advances in ecological research. Academic Press 171–313. London, UKCrossRefGoogle Scholar
  6. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320: 37–77CrossRefGoogle Scholar
  7. Brundrett MC (2017) Distribution and Evolution of Mycorrhizal Types and Other Specialised Roots in Australia. In: Tedersoo L (ed) Biogeography of Mycorrhizal Symbiosis. Springer International 361–394. Cham, SwitzerlandGoogle Scholar
  8. Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbiosis and global host plant diversity. New Phytologist 220: 1108–1115PubMedCrossRefPubMedCentralGoogle Scholar
  9. Brundrett MC, Tedersoo L (2019) Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytologist 221: 18–24.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bruzone MC, Fontenla SB, Vohník M (2015). Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza 25: 25–40PubMedCrossRefGoogle Scholar
  11. Bueno CG, Moora M, Gerz M, Davison J, Öpik M, Pärtel M, Helm A, Ronk A, Kühn I, Zobel M (2017). Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecology and Biogeography 26: 690–699CrossRefGoogle Scholar
  12. Bueno CG, Gerz M, Zobel M, Moora M (2019) Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza 29: 1–11Google Scholar
  13. Cabido M, Zeballos SR, Zak M, Carranza ML, Giorgis MA, Cantero JJ, Acosta ATR (2018) Native Woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Applied Vegetation Science 21: 298–311CrossRefGoogle Scholar
  14. Cabrera AL (1971) Fitogeografía de la república Argentina. Boletín de la Sociedad Argentina de Botánica 14: 1–42Google Scholar
  15. Callaway RM, Mahall BE, Wicks C, Pankey J, Zabinski C (2003) Soil fungi and the effects of an invasive forb on grasses: neighbor identity matters. Ecology 84: 129–135CrossRefGoogle Scholar
  16. Calviño CI, Edwards P, Fernández M, Relva MA, Ezcurra C (2018) Not one but three: undetected invasive Alnus species in northwestern Patagonia confirmed with cpDNA and ITS sequences. Biological Invasions 20: 2715–2722CrossRefGoogle Scholar
  17. Castillo CG, Borie F, Godoy R, Rubio R, Sieverding E (2006) Diversity of mycorrhizal plant species and arbuscular mycorrhizal fungi in evergreen forest, deciduous forest and grassland ecosystems of Southern Chile. Journal of Applied Botany and Food Quality 80: 40–47Google Scholar
  18. Charles H, Dukes JS (2007) Impacts of Invasive Species on Ecosystem Services. In: Nentwig W (ed) Biological invasions. Springer 217–237. Berlin, HeidelbergCrossRefGoogle Scholar
  19. Cleland EE (2011). Trait divergence and the ecosystem impacts of invading species. New Phytologist 189: 649–652PubMedCrossRefGoogle Scholar
  20. Cornelissen J, Aerts R, Cerabolini B, Werger M, Van Der Heijden M (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129: 611–619PubMedCrossRefGoogle Scholar
  21. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465–1471PubMedCrossRefGoogle Scholar
  22. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109–126CrossRefGoogle Scholar
  23. Datri LA, Faggi AM, Gallo LA (2015) Modelo de invasión no lineal y funciones bioingenieras de sauce fragilis en Patagonia (Argentina). European Scientific Journals 1: 265–272Google Scholar
  24. Dickie IA, Thomas MM, Bellingham PJ (2007) On the perils of mycorrhizal status lists: the case of Buddleja davidii. Mycorrhiza 17: 687PubMedCrossRefGoogle Scholar
  25. Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau ML, Grelet G, Hulme PE, Klironomos J, Makiola A, Nuñez MA, Pringle A, Thrall PH, Tourtellot SG, Waller L, Williams NM (2017) The emerging science of linked plant–fungal invasions. New Phytologist 215: 1314–1332PubMedCrossRefGoogle Scholar
  26. Fernandez RD, Ceballos SJ, Malizia A, Aragón R (2017) Gleditsia triacanthos (Fabaceae) in Argentina: a review of its invasion. Australian Journal of Botany 65: 203–213CrossRefGoogle Scholar
  27. Fitter AH (2005) Darkness visible: reflections on underground ecology. Journal of Ecology 93: 231–243CrossRefGoogle Scholar
  28. Fracchia S, Aranda A, Gopar A, Silvani V, Fernandez L, Godeas A (2009) Mycorrhizal status of plant species in the Chaco Serrano Woodland from central Argentina. Mycorrhiza 19: 205–214PubMedCrossRefGoogle Scholar
  29. Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright J (2017) Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews 92: 1156–1173PubMedCrossRefGoogle Scholar
  30. Furey, C, Tecco PA, Perez-Harguindeguy N, Giorgis MA, Grossi M (2014) The importance of native and exotic plant identity and dominance on decomposition patterns in mountain woodlands of central Argentina. Acta Oecologica 54: 13–20CrossRefGoogle Scholar
  31. Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Wicaksono CY, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Molecular Ecology 23: 2452–2472CrossRefGoogle Scholar
  32. Giorgis MA, Cingolani AM, Chiarini F, Chiapella J, Barboza G, Ariza Espinar L, Morero R, Gurvich DE, Tecco PA, Subils R Cabido M (2011a) Composición florística del Bosque Chaqueño Serrano de la provincia de Córdoba, Argentina. Kurtziana 36: 9–43Google Scholar
  33. Giorgis MA, Tecco PA, Cingolani AM, Renison D, Marcora P, Paiaro V (2011b) Factors associated with woody alien species distribution in a newly invaded mountain system of central Argentina. Biological Invasions 13: 1423–1434CrossRefGoogle Scholar
  34. Giorgis MA, Tecco PA (2014) Árboles y arbustos invasores de la Provincia de Córdoba (Argentina): una contribución a la sistematización de bases de datos globales. Boletín de la Sociedad Argentina de Botánica 49: 581–603Google Scholar
  35. Giorgis MA, Cingolani AM, Gurvich DE, Tecco PA, Chiapella J, Chiarini F, Cabido M (2017) Changes in floristic composition and physiognomy are decoupled along elevation gradients in central Argentina. Applied Vegetation Science 20: 558–571CrossRefGoogle Scholar
  36. Godoy R, Romero R, Carrillo R (1994) Status micotrófico de la flora vascular en bosques de coníferas nativas del sur de Chile. Revista Chilena de Historia Natural 67: 209–220Google Scholar
  37. Grau HR, Aragón R (2000) Ecología de árboles exóticos de las Yungas argentinas. Laboratorio de Investigaciones Ecológicas de las Yungas. Universidad Nacional de TucumánGoogle Scholar
  38. Hayward J, Horton TR, Pauchard A, Nuñez MA (2015a) A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96: 1438–1444PubMedCrossRefGoogle Scholar
  39. Hayward J, Horton TR, Nuñez MA (2015b) Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytologist 208: 497–506PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hoyos LE, Gavier-Pizarro GI, Kuemmerle T, Bucher EH, Radeloff VC, Tecco, PA (2010) Invasion of glossy privet (Ligustrum lucidum) and native forest loss in the Sierras Chicas of Córdoba, Argentina. Biological invasions 12: 3261–3275CrossRefGoogle Scholar
  41. Kutschker A, Hechem V, Codesal P, Rafael M, López S, Silva V (2015) Diversidad de plantas exóticas en áreas sometidas a distintos disturbios en el Parque Nacional Los Alerces, Chubut (Argentina). Boletín de la Sociedad Argentina de Botánica 50: 47–59. Córdoba, ArgentinaGoogle Scholar
  42. Leishman MR, Haslehurst T, Ares A, Baruch Z (2007) Leaf trait relationships of native and invasive plants: community and global scale comparisons. New Phytologist 176: 635–643PubMedCrossRefGoogle Scholar
  43. Leishman MR, Thomson V P, Cooke J (2010) Native and exotic invasive plants have fundamentally similar carbon capture strategies. Journal of Ecology 98: 28–42CrossRefGoogle Scholar
  44. Lohbeck M, Poorter L, Martínez-Ramos M, Rodriguez-Velázquez J, Breugel, M, Bongers F (2014) Changing drivers of species dominance during tropical forest succession. Functional Ecology 28: 1052–1058CrossRefGoogle Scholar
  45. MA (2005) Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC, USAGoogle Scholar
  46. Mack RN, Simberloff D, Lonsdale MW, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences and control. Ecological Applications 10: 689–710CrossRefGoogle Scholar
  47. Maremmani A, Bedini S, Matoševic I, Tomei PE, Giovannetti M (2003) Type of mycorrhizal associations in two coastal nature reserves of the Mediterranean basin. Mycorrhiza 13: 33–40PubMedCrossRefPubMedCentralGoogle Scholar
  48. Marcora PI, Ferreras AE, Zeballos SR, Funes G, Longo S, Urcelay C, Tecco PA (2018) Context-dependent effects of fire and browsing on woody alien invasion in mountain ecosystems. Oecologia 188: 479–490PubMedCrossRefGoogle Scholar
  49. Menzel A, Hempel S, Klotz S, Moora M, Pyšek P, Rillig M C, Zobel M, Kühn I (2017) Mycorrhizal status helps explain invasion success of alien plant species. Ecology 98: 92–102PubMedCrossRefPubMedCentralGoogle Scholar
  50. Morello J, Matteuci S, Rodriguez A, Silva M (2012). Ecorregiones y complejos ecosistémicos argentinos. Buenos Aires, Orientación Gráfica EditoraGoogle Scholar
  51. Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90: 2352–2359PubMedCrossRefGoogle Scholar
  52. Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS one 8(6): e66832PubMedPubMedCentralCrossRefGoogle Scholar
  53. Nuñez MA, Dickie IA (2014) Invasive belowground mutualists of woody plants. Biological Invasions 16: 645–661CrossRefGoogle Scholar
  54. Orellana IA, Raffaele E (2010) The spread of the exotic conifer Pseudotsuga menziesii in Austrocedrus chilensis forests and shrublands in northwestern Patagonia, Argentina. New Zealand Journal of Forestry Science (New Zealand Forest Research Institute Ltd (trading as Scion)) 40Google Scholar
  55. Oyarzabal M, Clavijo J, Oakley L, Biganzoli F, Tognetti P, Barberis I, Maturo HM, Aragón R, Campanello PI, Prado D, Oesterheld M, León RJC (2018) Unidades de vegetación de la Argentina. Ecología Austral 28: 40–63CrossRefGoogle Scholar
  56. Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends in ecology & evolution 24: 497–504CrossRefGoogle Scholar
  57. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and Economic Costs of Nonindigenous Species in the United States. BioScience 50: 53–65CrossRefGoogle Scholar
  58. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288CrossRefGoogle Scholar
  59. Policelli N, Bruns TD, Vilgalys R, Nuñez MA (2018) Suilloid fungi as global drivers of pine invasions. New Phytologist 222: 714–725PubMedCrossRefGoogle Scholar
  60. Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal Symbioses and Plant Invasions. Annual Review of Ecology, Evolution, and Systematics 40: 699–715Google Scholar
  61. Pyšek P, Richardson DM (2007) Traits Associated with Invasiveness in Alien Plants: Where Do we Stand? In: Nentwig W (ed) Biological Invasions. Springer 97–125. Berlin, HeidelbergGoogle Scholar
  62. Read D J (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391CrossRefGoogle Scholar
  63. Read DJ (1993) Mycorrhiza in plant communities. Advances in Plant Pathology 9: 1–31Google Scholar
  64. Read DJ, Perez-Moreno J (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist 157: 475–492CrossRefGoogle Scholar
  65. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Diversity & Distributions 6: 93–107CrossRefGoogle Scholar
  66. Richardson DM (2006) Pinus: a model group for unlocking the secrets of alien plant invasions? Preslia 78: 375–388Google Scholar
  67. Richardson DM, van Wilgen BW, Nuñez MA (2008) Alien conifer invasions in South America: short fuse burning? Biological invasions 10: 573–577CrossRefGoogle Scholar
  68. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species – a global review. Diversity and Distributions 17: 788–809CrossRefGoogle Scholar
  69. Richardson DM, Hui C, Nuñez MA, Pauchard A (2014) Tree invasions: patterns, processes, challenges and opportunities. Biological Invasions 16: 473–81CrossRefGoogle Scholar
  70. Rubio G, Lavado RS, Pereyra FX (2019) The soils of Argentina. Springer International, Cham SwitzerlandCrossRefGoogle Scholar
  71. Salomón MES, Barroetaveña C, Rajchenberg M (2011) Do pine plantations provide mycorrhizal inocula for seedlings establishment in grasslands from Patagonia, Argentina? New forests 41: 191–205CrossRefGoogle Scholar
  72. Salomón MES, Barroetaveña C, Pildain MB, Williams EA, Rajchenberg M (2018) What happens to the mycorrhizal communities of native and exotic seedlings when Pseudotsuga menziesii invades Nothofagaceae forests in Patagonia, Argentina? Acta Oecologica 91: 108–119CrossRefGoogle Scholar
  73. Sarasola MM, Rusch VE, Schlichter TM, Ghersa CM (2006). Invasión de coníferas forestales en áreas de estepa y bosques de ciprés de la cordillera en la Región Andino Patagónica. Ecología austral 16: 143–156Google Scholar
  74. Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007). Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist 174: 864–878PubMedCrossRefPubMedCentralGoogle Scholar
  75. Simberloff D, Relva MA, Nuñez M (2002) Gringos en el bosque: introduced tree invasion in a native Nothofagus/Austrocedrus forest. Biological Invasions 4: 35–53CrossRefGoogle Scholar
  76. Simberloff D, Relva MA, Nuñez M (2003). Introduced species and management of a Nothofagus/Austrocedrus forest. Environmental Management 31: 0263–0275CrossRefGoogle Scholar
  77. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd. Academic Press. New YorkCrossRefGoogle Scholar
  78. Singer R, Morello JH (1960) Ectotrophic forest tree mycorrhizae and forest communities. Ecology 41: 549–551CrossRefGoogle Scholar
  79. Sirombra MG, Mesa LM (2010) Composición florística y distribución de los bosques ribereños subtropicales andinos del río Lules, Tucumán, Argentina. Revista de Biología Tropical 58: 499–510PubMedGoogle Scholar
  80. Soudzilovskaia NA, Vaessen S, van’t Zelfde M, Raes N (2017) Global patterns of mycorrhizal distribution and their environmental drivers. In: Tedersoo L (ed) Biogeography of Mycorrhizal Symbiosis. Springer International 223–235. Cham, SwitzerlandGoogle Scholar
  81. Tecco PA, Diaz S, Gurvich DE, Perez-Harguindeguy N, Cabido M, Bertone GA (2007) Facilitation and interference underlying the association between the woody invaders Pyracantha angustifolia and Ligustrum lucidum. Applied Vegetation Science 10: 211–218CrossRefGoogle Scholar
  82. Tecco PA, Díaz S, Cabido M, Urcelay C (2010) Functional traits of alien plants across contrasting climatic and land-use regimes: do aliens join the locals or try harder than them? Journal of Ecology 98: 17–27CrossRefGoogle Scholar
  83. Tecco PA, Urcelay C, Díaz S, Cabido M, Pérez-Harguindeguy N (2013) Contrasting functional trait syndromes underlay woody alien success in the same ecosystem. Austral Ecology 38: 443–451CrossRefGoogle Scholar
  84. Tedersoo L (2017) Global Biogeography and invasions of Ectomycorrhizal Plants: Past, Present and Future. In: Tedersoo L (ed) Biogeography of Mycorrhizal Symbiosis. Springer International 469–532. Cham, SwitzerlandGoogle Scholar
  85. Thomas PA, El-Barghathi M, Polwart A (2007) Biological flora of the British Isles: Juniperus communis L. Journal of Ecology 95: 1404–1440CrossRefGoogle Scholar
  86. Urcelay C (2002) Co-occurrence of three fungal root symbionts in Gaultheria poeppiggi DC in Central Argentina. Mycorrhiza 12: 89–92PubMedCrossRefGoogle Scholar
  87. Urcelay C, Tecco P (2006) Distribución de tipos micorrícicos en especies leñosas exóticas de Dominios fitogeográficos de Argentina. XXII Reunión Argentina de Ecología, Córdoba, Argentina. Libro de resúmenes, p. 344Google Scholar
  88. Urcelay C, Tecco PA (2008) Micorrizas en el cono sur sudamericano; una aproximación micogeográfica y sus implicancias en los procesos de invasiones biológicas. VI Congreso Latinoamericano de Micología, Mar del Plata, Argentina. Libro de resúmenes, p.242Google Scholar
  89. Urcelay C, Tecco PA. (2010) Mycorrhizal types in native and exotic woody species in Southern South America: a biogeographic approach. 9th International Mycological Congress – The Biology of Fungi. Edinburgh, UK. CD room (P3.48)Google Scholar
  90. Urcelay C, Longo S, Geml J, Tecco PA, Nouhra E (2017) Co-invasive exotic pines and their ectomycorrhizal symbionts show capabilities for wide distance and altitudinal range expansion. Fungal Ecology 25: 50–58CrossRefGoogle Scholar
  91. Urcelay C, Longo S, Geml J, Tecco PA (2019). Can arbuscular mycorrhizal fungi from non-invaded montane ecosystems facilitate the growth of alien trees? Mycorrhiza 29: 39–49PubMedCrossRefPubMedCentralGoogle Scholar
  92. Van der Heijden EW (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10: 185–193CrossRefGoogle Scholar
  93. Van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M (2010) Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecology Letters 13: 947–958PubMedGoogle Scholar
  94. Veblen TT, Kitzberger T, Lara A (1992) Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland. Journal of Vegetation Science 3: 507–520CrossRefGoogle Scholar
  95. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299–363PubMedCrossRefGoogle Scholar
  96. Weiher E, Clarke GP, Keddy PA (1998) Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81: 309–322CrossRefGoogle Scholar
  97. Wicaksono CY, Aguirre-Guiterrez J, Nouhra E, Pastor N, Raes N, Pacheco S, Geml, J (2017) Contracting montane cloud forests: a case study of the Andean alder (Alnus acuminata) and associated fungi in the Yungas. Biotropica 49: 141–152CrossRefGoogle Scholar
  98. WorldClim – Global Climate Data. Available at:
  99. Zeballos SR, Giorgis MA, Cingolani AM, Cabido M, Whitworth Hulse JI, Gurvich DE (2014) Do alien and native tree species from Central Argentina differ in their water transport strategy? Austral Ecology 39: 984–991CrossRefGoogle Scholar
  100. Zimmermann H, Ritz CM, Hirsch H, Renison D, Wesche K, Hensen I (2010). Highly reduced genetic diversity of Rosa rubiginosa L. populations in the invasive range. International Journal of Plant Sciences 171: 435–446CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carlos Urcelay
    • 1
    Email author
  • Paula A. Tecco
    • 1
  • Valentina Borda
    • 1
  • Silvana Longo
    • 1
  1. 1.Instituto Multidisciplinario de Biología Vegetal (CONICET) and Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations