Advertisement

Mycorrhizas in South American Anthropic Environments

  • Marcela C. Pagano
  • Newton Falcão
  • Olmar B. Weber
  • Eduardo A. Correa
  • Valeria S. Faggioli
  • Gabriel Grilli
  • Fernanda Covacevich
  • Marta N. Cabello
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

For a better understanding of natural, degraded areas and agro-ecosystems, the study of surface and deep soil responses to global change is required. To enhance the resilience of soil ecosystems, the examination and use of arbuscular mycorrhizas, was indicated since they are drivers of nutrient cycles participating in some ecosystem services, such as nutrient acquisition by plants. Currently, there is a holistic vision of AMF as multipurpose organisms with complex ecological functions in the soil. This chapter discusses advances on mycorrhizal fungi based on recent research from Southamerican countries. New reports on the occurrence of mycorrhizas in Amazonian dark earth, soils amended with vermicompost and biochar have resulted in a more detailed understanding of the soil biology from South America. Studies on mycorrhizas have developed largely; however, the understanding of mycorrhizas in anthropic environments are still incipient, and its limitations constitute a barrier for the contribution to sustainable cropping and forest systems. Few reports from South America showed that the addition of soil conditioners resulted in increases in plant cover and plant species richness. In this sense, the biochar/mycorrhizas interactions can be prioritized for sequestration of carbon in soils to contribute to climate change mitigation.

Keywords

Agricultural symbioses Anthropic soils Global change Sustainable crops Soil conditioners 

Notes

Acknowledgements

All authors contributed to this chapter. Dr Neimar F. Duarte - Pró-Reitor de Pesquisa, Inovação e Pós-Graduação, Instituto Federal de Minas Gerais, Brazil is gratefully acknowledged. Dr Gabriel Grilli was supported by FCEFyN (CONICET-UNiversidad Nacional de Córdoba).

References

  1. Aguilera P, Cornejo P, Borie F, Barea JM, von Baer E, Oehl F (2014) Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an Andosol with high aluminum level. Agriculture, Ecosystems and Environment 186: 178–184CrossRefGoogle Scholar
  2. Astiz IP, Barbieri PA, Echeverría HE, Rozas HRS, Covacevich F (2014) Indigenous mycorrhizal fungi from Argentina increase Zn nutrition of maize modulated by Zn fertilization Soil Environ. 33,1: 23–32Google Scholar
  3. Azcón-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Scientia Horticulturae 68: 1–24CrossRefGoogle Scholar
  4. Azevedo LCB, Stürmer SL, Lambais MR (2014) Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems. Brazilian Journal of Microbiology 45: 3, 995–1005PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ambrosano EJ, Azcón R, Cantarella H (2010) Crop rotation biomass and arbuscular mycorrhizal fungi effects on sugarcane yield. Sci agric 67:6CrossRefGoogle Scholar
  6. Arroyo-Kalin M (2008) Steps towards an ecology of landscape: A geoarchaeological approach to the study of anthropogenic dark earths in the central Amazon region, Brazil. PhD thesis, University of CambridgeGoogle Scholar
  7. Arroyo-Kalin M (2010) The Amazonian formative: crop domestication and anthropogenic soils. Diversity 2(4):473–504CrossRefGoogle Scholar
  8. Boix LR, Zinck JA (2008) Land-Use Planning in the Chaco Plain (Burruyacú, Argentina). Part 1: Evaluating Land-Use Options to Support Crop Diversification in an Agricultural Frontier Area Using Physical Land Evaluation. Environmental Management 42: 1043–1063CrossRefGoogle Scholar
  9. Bompadre,MJ Pérgola M, Bidondo LF, Colombo RP, et al. (2014) Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) Plants at different transplant conditions. e Scientific World Journal, Article ID 378950, 12 p.Google Scholar
  10. Bouffaud ML, Bernaud E, Colombet A, Van Tuinen D, Wipf D, Redecker D (2016) Regional-scale analysis of arbuscular mycorrhizal fungi: the case of Burgundy vineyards. J. Int. Sci. Vigne Vin 50, 1: 1–8Google Scholar
  11. Bradford MA (2014) Good dirt with good friends. Nature 505: 486–487CrossRefGoogle Scholar
  12. Bender SF, Van der Heijden MGA (2014) Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. Journal of Applied Ecology 52(1)CrossRefGoogle Scholar
  13. Braghirolli FL, Sgrott AF, Pescador R, Uhlmann A, Stürmer SL (2012) Arbuscular mycorrhizal fungi in riparian forest restoration and soil carbon fixation. Rev Bras Ciênc Solo 36:3CrossRefGoogle Scholar
  14. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric. Ecosyst. Environ. 116: 72–84CrossRefGoogle Scholar
  15. Castillo CG, Borie F, Oehl F, Sieverding E (2016) Arbuscular mycorrhizal fungi biodiversity: prospecting in Southern-Central zone of Chile. A review. Journal of Soil Science and Plant Nutrition 16 (2): 400–422Google Scholar
  16. Cely MVT, de Oliveira AG, de Freitas VF, de Luca MB et al. (2016) Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) Increase Yield of Soybean and Cotton under Field Conditions. Frontiers in Microbiology 7, Article 720Google Scholar
  17. Chaparro J, Sheflin A, Manter D, Vivanco J (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils 48: 489–499CrossRefGoogle Scholar
  18. Chliyeh M, Kachkouch W, Zouheir T, Touhami AQ et al. (2016) Evolution of a composite endomycorrhizal inoculums in function of time in the level of the olive plants rhizosphere. IJAPBC 5(1), ISSN: 2277–4688Google Scholar
  19. Coelho IR, Pedone-Bonfim MVL, Silva FSB, Maia LC (2014) Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer. Brazilian Journal of Microbiology 45, 4: 1173–1178PubMedCrossRefGoogle Scholar
  20. Cogo FD, Guimarães PTG, Pouyú Rojas E, Saggin Júnior OJ, Siqueira JO, Carneiro MAC (2017) Arbuscular mycorrhiza in Coffea arabica l.: Review and meta-analysis. Coffee Science, 12, 3: 419–443CrossRefGoogle Scholar
  21. Colombo RP, Bidondo LF, Silvani VA, Carbonetto MB, Rascovan N, Bompadre MJ, Pérgola M, Cuenca G, Godeas AM (2014) Diversity of arbuscular mycorrhizal fungi in soil from the Pampa Ondulada, Argentina, assessed by pyrosequencing and morphological techniques Canadian Journal of Microbiology 60, 12: 819–827PubMedCrossRefGoogle Scholar
  22. Covacevich F, Echeverría HE (2008) Receptivity of an Argentinean pampas soil to arbuscular mycorrhizal Glomus and Acaulospora strains. World Journal of Agricultural Sciences 4, 6: 688–698Google Scholar
  23. Covacevich F, Echeverría HE (2009) Mycorrhizal occurrence and responsiveness in tall fescue and wheatgrass are affected by the source of phosphorus fertilizer and fungal inoculation. Journal of Plant Interactions 4,2: 101–112CrossRefGoogle Scholar
  24. Covacevich F, Echeverría HE, Aguirrezaba LAN (2007) Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse-grown spring wheat from Argentina. Applied Soil Ecology 35: 1–9CrossRefGoogle Scholar
  25. Covacevich F, Marino MA, Echeverria HE (2006) The phosphorus source determines the arbuscular mycorrhizal potential and the native mycorrhizal colonization of tall fescue and wheat grass in a moderately acidic Argentinean soil. European Journal of Soil Biology 42: 127–138CrossRefGoogle Scholar
  26. Curaqueo G, Meier S, Borie F, Navia R (2014a) Biochar and Arbuscular Mycorrhizal Fungi: An Alternative to Contributing to Agroecosystem Sustainability The 20th World Congress of Soil Science June 8~13, Jeju, KoreaGoogle Scholar
  27. Curaqueo G, Meier S, Khan N, Cea M, Navia R (2014b) Use of biochar on two volcanic soils: effects on soil properties and barley yield. Journal of Soil Science and Plant Nutrition 14, 4: 911–924Google Scholar
  28. Czerniak MJ, Stürmer SL (2015) On-farm production of mycorrhizal inoculum using residues from the forestry industry. Revista Brasileira de Ciencia do Solo 38 (6):1712–1721CrossRefGoogle Scholar
  29. Carrenho R, Trufem SFB (2001) Bononi V L. R. 2001. Arbuscular mycorrhizal fungi in rhizospheres of three phytobionts established in a riparian area. Acta bot bras 15(1):115–124CrossRefGoogle Scholar
  30. Castillo CG, Rubio R, Rouanet L, Borie F (2006) Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fertil Soils 43:83CrossRefGoogle Scholar
  31. da Silva EP, Ferreira PAA, Furtini-Neto AE, Soares CRFS (2017) Arbuscular mycorrhiza and phosphate on growth of Australian Red Cedar seedlings. Ciência Florestal 27, 4: 1269–128CrossRefGoogle Scholar
  32. dos Santos RS, Ferreira JS, Scoriza RN (2017) Inoculum production of arbuscular mycorrhizal fungi native to soils under different forest covers. Rev. Ceres: 64, 2: 197–204CrossRefGoogle Scholar
  33. Dai M, Bainard LD, Hamel C, Gan Y, Lynch D (2013) Impact of Land Use on Arbuscular Mycorrhizal Fungal Communities in Rural Canada. Appl Environ Microbiol 79, 21: 6719–6729PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dela Piccolla C, Novotny EH, Ryosuke T, Saito M. Growth and Symbiosis of Plants with Arbuscular Mycorrhizal Fungi in Soil Submitted to Biochar Application 2016. In: International Conference of International Humic Substances Society, 18, 2016, Kanazawa. Keystone for future earth: natural organic matter (NOM) in diverse environments: proceedings. Kobe: IHSS: Kobe UniversityGoogle Scholar
  35. Douds DD, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005) On-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Bioresour Technol 97:809–818PubMedCrossRefGoogle Scholar
  36. Douds DD, Nagahashi G, Reider C, Hepperly PR (2008) Choosing a mixture ratio for the on-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Compost Science and Utilization 16: 52–60CrossRefGoogle Scholar
  37. Douds DD, Nagahashi G, Reider C, Hepperly PR (2010) On-farm production of inoculum of indigenous arbuscular mycorrhizal fungi and assessment of diluents of compost for inoculum production. Bioresource Technology 101 (7): 2326–2330PubMedCrossRefGoogle Scholar
  38. Druille M, Cabello MN, García Parisi PA, Golluscio RA, Omacini M (2015) Glyphosate vulnerability explains changes in root-symbionts propagules viability in pampean grasslands. Agriculture, Ecosystems and Environment 202: 48–55CrossRefGoogle Scholar
  39. Dantas BL, Weber OB, Matos EPNB, Neto JPM, Mendes Filho PF, Rossetti AG, Pagano MC (2015) Diversity of arbuscular mycorrhizal fungi in an organic orchard of semi-arid land of Ceará. Ciência Rural 45(8):1480–1486CrossRefGoogle Scholar
  40. Ellouze W, Hamel C, Vujanovic V, Gan Y, Bouzid S, St-Arnaud M (2013) Chickpea genotypes shape the soil microbiome and affect the establishment of the subsequent durum wheat crop in the semiarid North American Great Plains. Soil Biology & Biochemistry 63: 129–141CrossRefGoogle Scholar
  41. Faggioli VS, Cabello MN, Grilli G, Vasar M, Covacevich F, Öpik M (2019). Root colonizing and soil borne communities of arbuscular mycorrhizal fungi differ among soybean fields with contrasting historical land use. Agriculture, Ecosystems & Environment 269: 174–182CrossRefGoogle Scholar
  42. Faggioli VS (2016) Estudio de las comunidades de hongos formadores de micorrizas arbusculares en soja: Relación con la nutrición fosforada en agroecosistemas. Doctoral thesis. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata, 162 p.Google Scholar
  43. Farias DH (2012) Diversity of arbuscular mycorrhizal fungi in orchards and seedling growth of micropropagated blueberry. Dissertation (Master Degree) Post-Graduation Program in Agronomy. Faculdade de Agronomia Eliseu Maciel, Universidade Federal de PelotasGoogle Scholar
  44. Ferreira DA, Carneiro MAC, Saggin Junior OJ (2012) Fungos Micorrízicos Arbusculares em um Latossolo Vermelho sob Manejos e Usos no Cerrado. R. Bras. Ci. Solo 36:51–61CrossRefGoogle Scholar
  45. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478: 337–342PubMedPubMedCentralCrossRefGoogle Scholar
  46. Falcão NP, Comerford N, Lehmann J (2003) Determining nutrient bioavailability of Amazonian Dark Earth soils – methodological challenges. In J. Lehmann, DC Kern B Glaser & WI Woods (eds), Amazonian Dark Earths: Origin, Properties, Management (pp. 255–270). The Netherlands: Kluwer Academic PublishersGoogle Scholar
  47. FRASER JA, TEIXEIRA W, FALCÃO N et al (2011) Anthropogenic soils in the Central Amazon: from categories to a continuum. Area 43(3):264–273CrossRefGoogle Scholar
  48. Giovannetti M, Avio L (2002) Biotechnology of Arbuscular Mycorrhizas. Applied Mycology and Biotechnology 2: 275–310CrossRefGoogle Scholar
  49. Gomes EA, Oliveira CA, Lana UGP, Noda RW, Marriel IE, de Souza FA (2015) Arbuscular mycorrhizal fungal communities in the roots of maize lines contrasting for Al tolerance grown in limed and non-limed Brazilian Oxisoil. J. Microbiol. Biotechnol. 25(7): 978–987PubMedCrossRefGoogle Scholar
  50. GLASER B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Phililosophical Transactions of the Royal Society B 362(1478):187–196CrossRefGoogle Scholar
  51. Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist 153 (2): 335–344CrossRefGoogle Scholar
  52. Heberle ES, Armas RD, Heberle DA, Stürmer SL et al. (2015) Mycorrhizal Fungal Communities in Cassava after Cultivation of Cover Crops as Observed by the “PCR-DGGE” Technique. R. Bras. Ci. Solo 39:1292–1301CrossRefGoogle Scholar
  53. Hippler FWR, Moreira M (2013) Dependência micorrízica do amendoinzeiro sob doses de fósforo. Bragantia 72:184–191CrossRefGoogle Scholar
  54. Hofwegen G, Kuyper TW, Hoffland E, Broek JA, et al. Opening the black box: deciphering carbon and nutrient flows in Terra Preta (2009). In: Amazonian Dark Earths: Wim Sombroek’s Vision. Woods WI, Teixeira WG, Lehmann J, Steiner C, WinklerPrins AMGA, Rebellato L (Eds.)Google Scholar
  55. HECHT SBISM (2003) Implications of Kayapó practices. In: LEHMANN, J.; KERN, D. C.; GLASER, B.; WOODS, W. I. (Orgs.). Amazonian Dark Earths: Origin, properties, and management. Kluwer Academic Publishers, DordrechtGoogle Scholar
  56. Jarstfer AG, Sylvia DM (1995) Aeroponic culture of VAM fungi. In: Varma A and Hock B (eds) Mycorrhiza. Springer-Verlag, BerlinGoogle Scholar
  57. König F, Gonçalves CEP, Aguiar AR, Silva ACF (2014) Pampa Biome: Interactions between microorganisms and native plant species. Revista de Ciências Agrárias 37(1): 3–9 3Google Scholar
  58. Kern DC, Kämpf N (1989) Efeitos de antigos assentamentos indígenas na formação de solos com Terra Preta Arqueológicas na região de Oriximiná-PA. Revista Brasileira de Cienca do Solo 13:219–225Google Scholar
  59. Leal PL, Stürmer SL, Siqueira JO (2009) Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from soils under different land use systems in the Amazon, Brazil. Brazilian Journal of Microbiology 40: 111–121PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lekberg Y, Hammer EC, Olsson PA (2010) Plants as resource islands and storage units–adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiology Ecology 74: 336–345PubMedCrossRefGoogle Scholar
  61. Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology 95: 95–105CrossRefGoogle Scholar
  62. Mahecha-Vásquez G, Sierra S, Posada R (2017) Diversity indices using arbuscular mycorrhizal fungi to evaluate the soil state in banana crops in Colombia Applied Soil Ecology 109: 32–39CrossRefGoogle Scholar
  63. Major J, Steiner C, Ditommaso A, Falcão NP, Lehmann J (2005) Weed composition and cover after three years of soil fertility management in the central Brazilian Amazon: compost, fertilizer, manure and charcoal applications. Weed Biol Manag 5: 69–76CrossRefGoogle Scholar
  64. Nobre CP, Costa MG, Goto BT, Gehring C (2018) Arbuscular mycorrhizal fungi associated with the babassu palm (Attalea speciosa) in the eastern periphery of Amazonia, Brazil. Acta Amazonica 48: 321–329CrossRefGoogle Scholar
  65. Oehl F, Koch B (2018) Diversity of arbuscular mycorrhizal fungi in no-till and conventionally tilled vineyards. Journal of Applied Botany and Food Quality 91: 56–60Google Scholar
  66. Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol. 165: 273–283CrossRefGoogle Scholar
  67. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188: 223–241PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pagano MC, MA Lugo, FS Araújo, MA Ferrero, E Menoyo, Diego Steinaker (2012) Native Species for Restoration and Conservation of Biodiversity in South America in: Native Species: Identification, Conservation and Restoration. Nova Science Publishers Editors: Lluvia Marín, Dimos Kovač (eds)Google Scholar
  69. Pagano MC (2012) Mycorrhiza: occurrence in natural and restored environments. Nova Science PublishersGoogle Scholar
  70. Pagano MC (2016) Recent Advances on Mycorrhizal Fungi, Springer, Fungal Biology book seriesGoogle Scholar
  71. Pagano MC, Covacevich F (2011) Arbuscular Mycorrhizas in Agroecosystems. In: Fulton SM (ed) Mycorrhizal Fungi: Soil, Agriculture and Environmental Implications. Nova Science Publishers, New YorkGoogle Scholar
  72. Pagano MC, Ribeiro-Soares J, Cançado LG, Falcão NPS, et al. (2016) Depth dependence of black carbon structure, elemental and microbiological composition in anthropic Amazonian dark soil. Soil and Tillage Research 155, 298–307CrossRefGoogle Scholar
  73. Pagano MC, Utida MK, Gomes EA, Marriel IE, Cabello MN, Scotti MR (2011) Plant-type dependent changes in arbuscular mycorrhizal communities as soil quality indicator in semi-arid Brazil. Ecological Indicators 11 (2): 643–650CrossRefGoogle Scholar
  74. Pereira CMR, da Silva DKA, Ferreira ACA, Goto BT, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi in Atlantic forest areasunder different land uses. Agriculture, Ecosystems and Environment 185 (2014) 245–252CrossRefGoogle Scholar
  75. Pontes JS, Oehl F, Pereira CD, de Toledo Machado CT, Coyne D, da Silva DKA, Maia LC (2017) Diversity of arbuscular mycorrhizal fungi in the Brazilian’s Cerrado and in soybean under conservation and conventional tillage. Applied Soil Ecology 117–118 178–189CrossRefGoogle Scholar
  76. Porras Soriano A, Domench Menor B, Castillo Rubio J, Soraino Martin ML, Porras Piedra A (2002) Influence of vesicular arbuscular mycorrhizae on the growth of olive cuttings multiplied under nebulation. Olivae 92: 33–37.Google Scholar
  77. Ratto SE, Miguez FH (2006) Zinc en el cultivo de maíz, deficiencia de oportunidade. Informaciones agronómicas 31: 11–14Google Scholar
  78. Read DJ (2003) Towards Ecological Relevance – Progress and Pitfalls in the Path Towards an understanding of mycorrhizal functions in nature. In: van der Heijden MGA, Sanders IR (eds), Mycorrhizal Ecology. Springer, BerlinGoogle Scholar
  79. Roldan-Fajardo BE, Barea JM. Mycorrhizal dependency in the olive tree (Olea europaea L.), Physiology and genetics aspects of mycorrhizae, Paris, 1986; 323–326Google Scholar
  80. Rosa DJ, Ambrosini VG, Brunetto G, Soares CRFS et al. (2016) Physiological parameters in vines ‘Paulsen 1103’ (Vitis berlandieri x Vitis rupestris) inoculated with mycorrhizal fungi in soil contaminated with copper. Ciência Téc. Vitiv. 31(1): 14–23CrossRefGoogle Scholar
  81. Schalamuk S and Cabello MN (2010a) Effect of Tillage Systems on the Arbuscular Mycorrhizal Fungi (AMF) Propagule Bank in Soils. CAB International. Management of Fungal Plant Pathogens 162 (eds) A. Arya and A.E. Perelló.Google Scholar
  82. Schalamuk S, Cabello M (2010b) Arbuscular mycorrhizal fungal propagules from tillage and no-tillage systems: possible effects on Glomeromycota diversity. Mycologia 102(2): 261–268PubMedCrossRefGoogle Scholar
  83. Schalamuk S, Cabello MN, Chidichimo H, Golik S (2011) Effects of Inoculation with Glomus mosseae in conventionally tilled and nontilled soils with different levels of nitrogen fertilization on wheat growth, Arbuscular Mycorrhizal Colonization, and nitrogen nutrition. Communications in Soil Science and Plant Analysis 42(5):586–598CrossRefGoogle Scholar
  84. Schalamuk S, Velázquez S, Cabello M (2013) Dynamics of arbuscular mycorrhizal fungi spore populations and their viability under contrasting tillage systems in wheat at different phenological stages. Biological Agriculture & Horticulture 29: 38–45CrossRefGoogle Scholar
  85. Schalamuk, S. Velazquez, H. Chidichimo, M. Cabello (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98:1, 16–22, DOI:  https://doi.org/10.1080/15572536.2006.11832708 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Schueffler A, Anke T (2014) Fungal natural products in research and development. Nat. Prod. Rep. 31: 1425–1448PubMedCrossRefGoogle Scholar
  87. Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Eschborn: Deutsche Gesellschaft für Technische Zusammenarbeit.(GTZ) GmnBH, Esch boranGoogle Scholar
  88. Silva GAE, Siqueira JO, Stürmer SL, Moreira FMS (2018) Effectiveness of Arbuscular Mycorrhizal Fungal Isolates from the Land Uses of Amazon Region in Symbiosis with Cowpea. Anais da Academia Brasileira de Ciências 90, 1: 357–371PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sreenivassa MN (1992) Selection of an efficient vesicular–arbuscular mycorrhizal fungus for Chili (Capsicum annuum L.). Sci Hortic 50:53–58CrossRefGoogle Scholar
  90. Stürmer SL, Siqueira JO (2006) Diversity of Arbuscular Mycorrhizal Fungi in Brazilian Ecosystems. In: Moreira FMS, Siqueira JO, Brussaard L (eds) Soil Biodiversity in Amazonian and Other Brazilian Ecosystems. CABI Publishing, London, 206–236CrossRefGoogle Scholar
  91. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London, UKGoogle Scholar
  92. Soares CRFS, Carneiro MAC (2010) Micorrizas arbusculares na recuperação de áreas degradadas. In: Siqueira JO, Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de Pesquisa no Brasil. Lavras: Editora UFLA, 441–474 p.Google Scholar
  93. Thougnon Islas AJ, Hernandez Guijarro K, Eyherabide M, Sainz Rozas HR, Echeverría HE, Covacevich F (2016) Can soil properties and agricultural land use affect arbuscular mycorrhizal fungal communities indigenous from the Argentinean Pampas soils? Applied Soil Ecology 101: 47–56CrossRefGoogle Scholar
  94. Tsai SM, O’neill B, Cannavan FS, Saito D, Falcão NPS, Kern DC, Grossman J, Thies J et al. (2009) The Microbial World of Terra Preta. In: Woods WI, Teixeira WG, Lehmann J, Steiner C, WinklerPrins A, Rebellato L (eds) Amazonian Dark Earths: Wim Sombroek’s Vision. Springer, DordrechtGoogle Scholar
  95. Teste FP (2016) Restoring grasslands with arbuscular mycorrhizal fungi around remnant patches. Applied Vegetation Science 19, 1.CrossRefGoogle Scholar
  96. Torrez V, Ceulemans T, Mergeay J, de Meester L, Honnay O (2016) Effects of adding an arbuscular mycorrhizal fungi inoculum and of distance to donor sites on plant species recolonization following topsoil removal. Applied Vegetation Science 19:7–19CrossRefGoogle Scholar
  97. Velázquez MS, Fabisik JC, Abarca CL, Allegrucci N, Cabello M (2018) Colonization dynamics of arbuscular mycorrhizal fungi (AMF) in Ilex paraguariensis crops: Seasonality and influence of management practices. Journal of King Saud University – Science  https://doi.org/10.1016/j.jksus.2018.03.017
  98. Wahbi S, Sanguin H, Baudoin E, Tournier E, Maghraoui T, Prin Y, Hafidi M, Duponnois R (2016) Managing the Soil Mycorrhizal Infectivity to Improve the Agronomic Efficiency of Key Processes from Natural Ecosystems Integrated in Agricultural Management Systems. Springer International Publishing Switzerland, 17 K.R. Hakeem et al. (eds.), Plant, Soil and Microbes,  https://doi.org/10.1007/978-3-319-27455-3_2 CrossRefGoogle Scholar
  99. Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms.CrossRefGoogle Scholar
  100. Weber OB (2014) Biofertilizers with arbuscular mycorrhizal fungi in agriculture. In: Solaiman ZM, Abbott LK, Varma A (eds). Mycorrhizal fungi: use in sustainable agriculture and restoration. Soil biology: 41. Springer-Verlag, BerlinGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marcela C. Pagano
    • 1
  • Newton Falcão
    • 2
  • Olmar B. Weber
    • 3
  • Eduardo A. Correa
    • 4
  • Valeria S. Faggioli
    • 5
  • Gabriel Grilli
    • 6
  • Fernanda Covacevich
    • 7
  • Marta N. Cabello
    • 8
  1. 1.Federal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Instituto Nacional de Pesquisas da Amazonia (INPA)ManausBrazil
  3. 3.Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agroindústria TropicalFortalezaBrazil
  4. 4.Empresa de Pesquisa Agropecuária de Minas Gerais EPAMIG-URECOPitanguíBrazil
  5. 5.INTA EEAMarcos JuárezArgentina
  6. 6.FCEFyN (CONICET-Universidad Nacional de Córdoba)CórdobaArgentina
  7. 7.CONICET-Unidad Integrada EEA INTA- Facultad de Ciencias Agrárias UNMPBalcarceArgentina
  8. 8.Instituto Spegazzini (Facultad de Ciencias Naturales y Museo, UNLP)Comisión de Investigaciones Científicas de la Prov. de Buenos Aires (CICPBA)La PlataArgentina

Personalised recommendations