Advertisement

Mycorrhizas in the South American Mediterranean-Type Ecosystem: Chilean Matorral

  • Patricia Silva-FloresEmail author
  • Ana Aguilar
  • María José Dibán
  • María Isabel Mujica
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

One of the most important microorganisms in the soil are the mycorrhizal fungi; however, little research exists regarding mycorrhizal symbiosis on the South American Mediterranean-type ecosystem (MTE) – also commonly known as Chilean matorral. The aims of this chapter are to highlight and compile the existing and arising knowledge on mycorrhizal symbiosis of the Chilean MTE, as well as detect knowledge gaps and propose future directions of research. So far, the mycorrhizal type of some plant species of the Chilean matorral is known. Regarding arbuscular mycorrhizal symbiosis, there are few investigations on mycorrhizal ecology and applied research with agricultural purposes and more is in development. Some ectomycorrhizal and orchid mycorrhizal symbiosis research is available on ecological concerns about biodiversity patterns with applied potential for conservation. The lack of studies on ericoid mycorrhiza was detected. Finally, in spite of the ecological diversity studies carried on the mycorrhiza from the Chilean MTE, further studies quantifying the mycorrhizal contribution should be performed so as to be applied on conservation and sustainable systems.

Keywords

Mycorrhizal symbiosis Mycorrhizal type Arbuscular mycorrhiza Ectomycorrhiza Orchid mycorrhiza Ericoid mycorrhiza 

Notes

Acknowledgements

Patricia Silva-Flores was funded by the National Doctorate Grant N° 21140639 of CONICYT and CONICYT Regional/CEAF/R08I1001. P.S.F. also thanks the support of the Roberto Godoy regular FONDECYT 1190642. Ana Aguilar was funded by the National Doctorate Grant N° 21120047 and N° 81150505 of CONICYT and VI Scientific Research Fund of Pacific Hydro SA. A.A. also thanks the support of the regular postdoctoral 2018 grant of the Pontificia Universidad Católica de Valparaíso. María José Dibán was funded by Luis Felipe Hinojosa FONDECYT 1150690 and AFB170008. M.J.D also thanks to Dr. Götz Palfner, co-supervisor of Master Thesis, specifically in guiding taxonomic identification of some species. María Isabel Mujica thanks to CONICYT for the National Doctorate Grant N° 21151009.

References

  1. Alcaras C (2010) Caracterización de una población de Nothofagus macrocarpa (A.DC.) Vasq. & Rodr., en sector Granizo del Parque Nacional La Campana. Trabajo de Titulación. Universidad Austral de ChileGoogle Scholar
  2. Álvarez-Garrido L, Hortal S, Viñegla B, Carreira de la Fuente JA (2017) Plant-soil interactions as modulatory mechanism of adaptive capacity to global change in relict conifer forests. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  3. Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421.  https://doi.org/10.1046/j.1469-8137.2000.00587.x CrossRefGoogle Scholar
  4. Arista A, Arroyo J, Berjano R, Jiménez-Lobato V, Jiménez-López J, Lloret F, López-Jurado J, Márquez-Corro JI, Olmedo-Vicente E, Rodríguez-Castaneda NL, Sánchez M, Simón-Porcar VI, Vilà M, Picó FX (2017) Present and future of ecological and evolutionary research in Mediterranean-type ecosystems: Conclusions from the last International Mediterranean Ecosystems Conference. Am J Bot 104:1777–1782.  https://doi.org/10.3732/ajb.1700367 CrossRefGoogle Scholar
  5. Armesto J, Arroyo M, Hinojosa L (2007) The Mediterranean environment of central Chile. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, Inc., New York, p 184–199Google Scholar
  6. Batty AL, Dixon KW, Brundrett MC, Sivasithamparam K (2002) Orchid conservation and mycorrhizal associations. In: Sivasithamparam K, Dixon KW, Barrett RL (eds) Microorganisms in Plant Conservation and Biodiversity. Kluwer Academic Publishers, Dordrecht, p 195–226Google Scholar
  7. Benedetti S, Balocchi F, Hormazábal M (2018) Arbuscular mycorrhizal fungi (AMF) linked to Peumus boldus natural formation in Central Chile. Gayana Bot 75:431–437CrossRefGoogle Scholar
  8. Benito Matías LF, Álvarez Lafuente A, Peñuelas JL (2017) Tuber melanosporum improves freezing tolerance in Quercus faginea and Q. ilex seedlings. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  9. Benoit IL (1989) Libro Rojo de la Flora Terrestre de Chile (Primera Parte). CONAF, Santiago de ChileGoogle Scholar
  10. Bernhardt P (1995) Biogeography and Floral Evolution in the Geoblasteae (Orchidaceae). In: Arroyo MTK, Zedler PH, Fox MD (eds) Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia. Springer, New York, p 116–134CrossRefGoogle Scholar
  11. Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61.  https://doi.org/10.1016/j.mycres.2006.11.006 CrossRefGoogle Scholar
  12. Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol.  https://doi.org/10.1111/nph.14976 CrossRefGoogle Scholar
  13. Bueno CG, Marín C, Silva-Flores P, Aguilera P, Godoy R (2017) Think globally, research locally: emerging opportunities for mycorrhizal research in South America. New Phytol 215:1306–1309.  https://doi.org/10.1111/nph.14709 CrossRefGoogle Scholar
  14. Bueno CG, Gerz M, Zobel M, Moora M (2018) Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza.  https://doi.org/10.1007/s00572-018-0869-1 CrossRefGoogle Scholar
  15. Calviño-Cancela M, Santolamazza S, Durán M, Neumann M (2017) On the ecological integration of Eucalyptus globulus in NW Spain: new pollination and mycorrhizal interactions with local birds and fungi. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  16. Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: Evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416. doi:  https://doi.org/10.1111/j.1469-8137.2006.01767.x CrossRefPubMedGoogle Scholar
  17. Casanova-Katny MA, Torres-Mellado GA, Palfner G, Cavieres LA (2011) The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species. Mycorrhiza 21:613–622.  https://doi.org/10.1007/s00572-011-0367-1 CrossRefGoogle Scholar
  18. Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in mediterranean-climate regions. Trends Ecol Evol 11:362–366.  https://doi.org/10.1016/0169-5347(96)10044-6CrossRefGoogle Scholar
  19. Curaqueo G, Acevedo E, Cornejo P, Seguel A, Rubio R, Borie F (2010) Tillage effect on soil organic matter, mycorrhizal hyphae and aggregates in a Mediterranean agroecosystem. Rev la Cienc del suelo y Nutr Veg 10:12–21.  https://doi.org/10.4067/S0718-27912010000100002 Google Scholar
  20. Curaqueo G, Barea JM, Acevedo E, Rubio R, Cornejo P, Borie F (2011) Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central Chile. Soil Tillage Res 113:11–18.  https://doi.org/10.1016/j.still.2011.02.004 CrossRefGoogle Scholar
  21. Dallman PR (1998) Plant Life in the World’s Mediterranean Climates: California, Chile, South Africa, Australia, and the Mediterranean Basin. University of California Press Books, BerkeleyGoogle Scholar
  22. Dearnaley JDW, Martos F, Selosse M (2012) Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In: Fungal Associations. Springer Berlin Heidelberg, Berlin, Heidelberg, p 207–230CrossRefGoogle Scholar
  23. Dias T, Liberati D, Munzi S, Gouveia C, Ulm F, Afonso AC, Ochoa-Hueso R, Manrique E, Sheppard L, Martins-Loução MA, Bernardes da Silva A, Cruz C (2017) Ecological independence and self-reliance of the dominant plant species loosen ecosystem integration: evidence from 7 years’ of changing patterns of nitrogen pulses in a Mediterranean Basin shrubland. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  24. Dressler R (1981) The orchids: natural history and classification. Harvard University Press, CambridgeGoogle Scholar
  25. Fracchia S, Aranda-Rickert A, Flachsland E, Terada G, Sede S (2014a) Mycorrhizal compatibility and symbiotic reproduction of Gavilea australis, an endangered terrestrial orchid from south Patagonia. Mycorrhiza 24:627–634.  https://doi.org/10.1007/s00572-014-0579-2 CrossRefGoogle Scholar
  26. Fracchia S, Silvani V, Flachsland E, Terada G, Sede S (2014b) Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina. Mycorrhiza 24:35–43.  https://doi.org/10.1007/s00572-013-0510-2 CrossRefGoogle Scholar
  27. Garrido N (1985) Index Agaricalium Chilensium. J. Cramer, VaduzGoogle Scholar
  28. Garrido N (1988) Agaricales s.l. und ihre Mykorrhizen in den Nothofagus-Wäldern Mittelchiles. Schweizerbart Science Publishers, Stuttgart, GermanyGoogle Scholar
  29. Gebauer G, Preiss K, Gebauer AC (2016) Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol 211:11–15.  https://doi.org/10.1111/nph.13865 CrossRefGoogle Scholar
  30. Gil-Martínez M, López-García Á, Navarro-Fernández CM, et al. (2017) Understanding feedback processes between holm oak (Quercus ilex) and their ectomycorrhizal fungal symbionts in trace-element polluted soils in Mediterranean ecosystems. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  31. Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163.  https://doi.org/10.3732/ajb.1000486 CrossRefGoogle Scholar
  32. Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Doucette A, Caro GG, McDaniel J, Clements MA, Arroyo MK, Endara L, Kriebel R, Williams NH, Cameron KM (2016) Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J Biogeogr 43:1905–1916.  https://doi.org/10.1111/jbi.12854 CrossRefGoogle Scholar
  33. Harris J (2009) Soil Microbial Communities and Restoration Ecology: Facilitators or Followers? Science 325:573–574.  https://doi.org/10.1126/science.1172975 CrossRefGoogle Scholar
  34. Hernández-Rodríguez M, Mediavilla O, Oria-de-Rueda J, Martín-Pinto P (2017) Ecology of fungal communities after fire in Mediterranean systems dominated by Cistus ladanifer L. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  35. Herrera H, Valadares R, Contreras D, Bashan Y, Arriagada C (2017) Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile. Mycorrhiza 27:175–188.  https://doi.org/10.1007/s00572-016-0733-0 CrossRefGoogle Scholar
  36. Herrera H, García-Romera I, Meneses C, Pereira G, Arriagada C (2019) Orchid Mycorrhizal Interactions on the Pacific Side of the Andes from Chile. A Review. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-019-00026-x
  37. Horak E (1980) Agaricales y gasteromicetes secotioides. In: Flora Criptogámica de Tierra del Fuego, tomo XI, fascículo 6: Fungi, Basidiomycetes. FECYC, Buenos AiresGoogle Scholar
  38. Hynson N, Madsen T, Selosse M, Adam IKU, Ogura-Tsujita Y, Roy M, Gebauer G (2013) The physiological ecology of mycoheterotrophic plants. In: Merckx V (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, New York, p 297–342CrossRefGoogle Scholar
  39. Jacquemyn H, Brys R, Waud M, Busschaert P, Lievens B (2015) Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytol 206:1127–1134.  https://doi.org/10.1111/nph.13281 CrossRefGoogle Scholar
  40. Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1173.  https://doi.org/10.1126/science.aam9970 CrossRefGoogle Scholar
  41. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13.  https://doi.org/10.1016/j.femsec.2003.11.012 CrossRefGoogle Scholar
  42. Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, von Röpenack-Lahaye E, Wang TL, Eisenreich W, Dörmann P, Parniske M, Gutjahr C (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife 6:1–33.  https://doi.org/10.7554/eLife.29107 CrossRefGoogle Scholar
  43. Leake J (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216.  https://doi.org/10.1111/j.1469-8137.1994.tb04272.x CrossRefGoogle Scholar
  44. Liebel HT, Bidartondo MI, Preiss K, Segreto R, Stöckel M, Rodda M, Gebauer G (2010) C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. Am J Bot 97:903–12.  https://doi.org/10.3732/ajb.0900354 CrossRefGoogle Scholar
  45. López García A, Gil-Martínez M, Navarro-Fernández CM, Azcón-Aguilar C, Domínguez MT, Marañón T (2017) Assessment of the recovery of functional diversity of ectomycorrhizal fungal communities in metal polluted soils. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  46. Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178.  https://doi.org/10.1126/science.aan0081 CrossRefGoogle Scholar
  47. Marañón T, Domínguez M, Madejón P, Navarro-Fernández CM, Gil-Martínez M, López-García Á, Murillo JM (2017) Soil functioning and ecosystem services: using trees to remediate contaminated soils. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  48. Marín C, Aguilera P, Oehl F, Godoy R (2017) Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. J soil Sci plant Nutr 17, 966–984.  https://doi.org/10.4067/S0718-95162017000400010 CrossRefGoogle Scholar
  49. Mediavilla O, Oria de Rueda JA, Martín-Pinto P (2017) Diversity of fungal communities after a wildfire in Mediterranean pine forest is linked to vegetation replacement. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  50. Moora M (2014) Mycorrhizal traits and plant communities: Perspectives for integration. J Veg Sci 25:1126–1132.  https://doi.org/10.1111/jvs.12177 CrossRefGoogle Scholar
  51. Moser M, Horak E (1975) Cortinarius und nahe verwandte Gattungen in Südamerika. Beihefte zur Nov Hedwigia 52:1–628Google Scholar
  52. Mujica MI, Saez N, Cisternas M, Manzano M, Armesto JJ, Pérez F (2016) Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile. Ann Bot 118:149–158.  https://doi.org/10.1093/aob/mcw082 CrossRefGoogle Scholar
  53. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefGoogle Scholar
  54. Navarro-Fernández CM, Pérez-Ramos IM, G. de la Riva E, Vera J, Roumet C, Villar R, Marañón T (2017) A functional approach to explore the drivers of mycorrhizal trait variability in Mediterranean plant communities. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  55. Neuenkamp L, Moora M, Öpik M, Davison J, Gerz M, Männistö M, Jairus T, Vasar M, Zobel M (2018) The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. New Phytol  https://doi.org/10.1111/nph.14995 CrossRefGoogle Scholar
  56. Niveiro N, Albertó E (2012) Checklist of the Argentine Agaricales I. Amanitaceae, Pluteaceae and Hygrophoraceae. Mycotaxon 119:493–494.  https://doi.org/10.5248/119.493 CrossRefGoogle Scholar
  57. Niveiro N, Albertó E (2013) Checklist of the Argentinean Agaricales 6. Paxillaceae, Gomphidiaceae, Boletaceae and Russulaceae. Mycotaxon 123:1–8Google Scholar
  58. Niveiro N, Albertó E (2014) Checklist of the Argentine Agaricales 7. Cortinariaceae and Entolomataceae. Check List 10:72–96CrossRefGoogle Scholar
  59. Novoa P, Espejo J, Alarcon D, Cisternas M, Domínguez E (2015) Guía de campo de las orquídeas chilenas. Corporación Chilena de la Madera, ConcepciónGoogle Scholar
  60. Parker I, Grove S, Haubensak KA (2017) Biotic and abiotic impacts of invasive nitrogen-fixing shrubs in the Pacific Northwest of the United States. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  61. Pérez-Izquierdo L, Zabal-Aguirre M, González-Martínez S, Verdú M, Buée M, Rincón A (2017) Fire recurrence impacts the functioning and phylogenetic structure of fungal communities in Mediterranean pine forests. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  62. Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163.  https://doi.org/10.1023/A:1020246715436 CrossRefGoogle Scholar
  63. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391CrossRefGoogle Scholar
  64. Read DJ, Leake JR, Perez-Moreno J (2004): Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82: 1243–1263 https://doi.org/10.1139/B04-123CrossRefGoogle Scholar
  65. Read DJ, Perez-Moreno J (2003): Mycorrhizas and nutrient cycling in ecosystems - A journey towards relevance? New Phytol 157: 475–492.  https://doi.org/10.1046/j.1469-8137.2003.00704.x CrossRefGoogle Scholar
  66. Rincón Herranz A, Zabal-Aguirre M, Flores-Renteria D, González-Martínez SC, Buée M, Pérez-Izquierdo L (2017) Structural and functional responses of fungal communities to biotic and abiotic factors in Mediterranean pine forests. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  67. Romano G, Greslebin A, Lechner BE (2017) Hongos agaricoides de los bosques de Nothofagus pumilio (Chubut, Argerntina): Clave y listado de especies. Rev del Mus Argentino Ciencias Nat Nueva Ser 19:36–69. https://doi.org/10.22179/REVMACN.18.495Google Scholar
  68. Romano G, Lechner BE (2013) The Cortinariaceae of Argentina’ s Nothofagus forests. Mycotaxon 126: 1–35.  https://doi.org/10.5248/126.247 CrossRefGoogle Scholar
  69. Romero Munar A, Gulías J, Baraza E (2017) Ecophysiological impact of arbuscular mycorrhiza inoculation on Arundo donax, a promising biomass crop. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar
  70. Rundel PW, Cowling RM (2013) Mediterranean-Climate Ecosystems. In: Levin S (ed) Encyclopedia of Biodiversity: Second Edition, Waltham, MA: Academic, p 212–222CrossRefGoogle Scholar
  71. Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70.  https://doi.org/10.1016/j.tplants.2008.11.004 CrossRefGoogle Scholar
  72. Silva-Flores P, Oses I, Almada R, Molina-Montenegro MM, Palfner G (submitted) Mycorrhizal type of dominant trees in the sclerophyllous shrubland of the Mediterranean Chilean Matorral. J Soil Sci Plant NutrGoogle Scholar
  73. Silva-Flores P, Bueno CG, Neira J, Palfner G (2019) Physico-chemical soil factors and seasonality regulate spore bank density of Arbuscular Mycorrhizal Fungi in two sclerophyllous shrublands of the Mediterranean Chilean matorral. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-018-0004-6
  74. Singer R (1969) Mycoflora Australis. Nov Hedwigia Beihefte 576Google Scholar
  75. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier LtdGoogle Scholar
  76. Steinfort U, Verdugo G, Besoain X, Cisternas MA (2010) Mycorrhizal association and symbiotic germination of the terrestrial orchid Bipinnula fimbriata (Poepp.) Johnst (Orchidaceae). Flora Morphol Distrib Funct Ecol Plants 205:811–817.  https://doi.org/10.1016/j.flora.2010.01.005 CrossRefGoogle Scholar
  77. Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556.  https://doi.org/10.1093/aob/mcp025 CrossRefGoogle Scholar
  78. Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Koljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490.  https://doi.org/10.1111/j.1469-8137.2008.02561.x CrossRefGoogle Scholar
  79. Torres-Mellado G, Escobar I, Palfner G, Casanova-Katny M (2012) Mycotrophy in Gilliesieae, a threatened and poorly known tribe of Alliaceae from central Chile. Rev Chil Hist Nat 85:179–186.  https://doi.org/10.4067/S0716-078X2012000200004 CrossRefGoogle Scholar
  80. Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197.  https://doi.org/10.1111/j.1472-4642.2008.00518.x CrossRefGoogle Scholar
  81. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423.  https://doi.org/10.1111/nph.13288 CrossRefGoogle Scholar
  82. Verdú M (2017) Plant facilitation and phylogenetics. In: Abstract book of the XIV MEDECOS & XIII AEET meeting. Human driven scenarios for evolutionary and ecological changes. Asociación Española de Ecología Terrestre, Madrid, p 266Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patricia Silva-Flores
    • 1
    • 2
    • 3
    Email author
  • Ana Aguilar
    • 4
    • 5
  • María José Dibán
    • 3
    • 6
    • 7
  • María Isabel Mujica
    • 7
    • 8
  1. 1.Centro de Estudios Avanzados en Fruticultura (CEAF)SantiagoChile
  2. 2.Departamento de BotánicaUniversidad de ConcepciónConcepciónChile
  3. 3.Micófilos ONGConcepciónChile
  4. 4.Centro Regional de Innovación Hortofrutícola de Valparaíso (CERES)QuillotaChile
  5. 5.Pontificia Universidad Católica de ValparaísoValparaísoChile
  6. 6.Departamento de Ciencias EcológicasUniversidad de ChileSantiagoChile
  7. 7.Instituto de Ecología y Biodiversidad (IEB)ÑuñoaChile
  8. 8.Departamento de EcologíaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations