Arbuscular Mycorrhizal Fungal Communities of High Mountain Ecosystems of South America: Relationship with Microscale and Macroscale Factors

  • Florencia SoterasEmail author
  • Eugenia Menoyo
  • Gabriel Grilli
  • Alejandra G. Becerra
Part of the Fungal Biology book series (FUNGBIO)


The high mountain ecosystems of South America represent one of the main hotspots of biodiversity. There is an increasing interest in disentangling global patterns of arbuscular mycorrhizal fungi (AMF). Recently studies postulated that the majority of AMF taxa are cosmopolitan, although community composition changes depend on microscale and macroscale factors. In this Chapter we reviewed the studies performed at high mountain ecosystems of South America analyzing the richness of morphospecies and structure of AMF communties in relation to microscale (host species, pH, N, P) and macroscale factors (latitude, temperature, precipitation). AMF communities differed in both scales being associated with sampling site, vegetation type or host identity. Glomeraceae and Gigasporaceae families were related to micro- and macro-scale factors, while Acaulosporaceae did not show significant relationships with neither micro- nor with macro-scale factors. At higher scales, AMF community composition of tropical and temperate ecosystems differed due to latitude, precipitation and temperature. Meanwhile, at lower scales soil characteristics and host species became the most relevant factors in differentiating AMF composition of sites. AMF communities of high mountain forests of South America are differentially affected by the particular characteristics of these environments different from the cosmopolitan pattern.


Abiotic factors Arbuscular mycorrhizal fungi Geographical structure Highlands 



This work was financially supported by FONCyT (BID PICT 438–2006 granted to A.B., BID 2015 PICT 338 granted to F.S), and Idea Wild Foundation. All authors are staff researchers from CONICET.


  1. Bardgett RD, Van Der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515(7528):505–511Google Scholar
  2. Barry RG (2008) Mountain weather and climate. Third edit, Mountain Weather and Climate, Third Edition. Third edit. New York: Cambridge University PressGoogle Scholar
  3. Becerra AG, Cabello MN, Bartoloni NJ (2011) Native arbuscular mycorrhizal fungi in the Yungas forests, Argentina. Mycologia 103(2):273–279PubMedGoogle Scholar
  4. Becerra AG, Cabello M, Zak MR, Bartoloni N (2009) Arbuscular mycorrhizae of dominant plant species in Yungas forests, Argentina. Mycologia 101(5):612–621PubMedGoogle Scholar
  5. Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: More diverse than meets the eye, and the ecological tale of why. BioScience 51(11):923–931Google Scholar
  6. Bonfim JA, Vasconcellos RLF, Gumiere T, de Lourdes Colombo Mescolotti D, Oehl F, Nogueira Cardoso EJB (2016) Diversity of arbuscular mycorrhizal fungi in a Brazilian Atlantic Forest toposequence. Microb Ecol 71(1):164–177PubMedGoogle Scholar
  7. Borcard D, Legendre P (2002) All scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol Model 153:51–68Google Scholar
  8. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85(7):1826–1832Google Scholar
  9. Castillo DD, Carrasco JC, Quevedo LA, Ricaurte CB, Gavilanes AV, Borz SA (2017) Diversity, composition and structure of Andean High Forest in Ecuador, South America. Bull Transilvania University Braşov 10(59):1–16Google Scholar
  10. Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18(9):484–491PubMedGoogle Scholar
  11. Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22Google Scholar
  12. Coutinho ES, Fernandes GW, Berbara RLL, Valério HM, Goto BT (2015) Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 25(8):627–638PubMedGoogle Scholar
  13. Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 127(6251):970–973Google Scholar
  14. de Carvalho F, de Souza FA, Carrenho R, de Souza Moreira FM, da Conçeição Jesus E, Wilson Fernandes G (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19Google Scholar
  15. de Souza F, Dalpé Y, Declerck S, de la Providencia I, Séjalon-Delmas N (2005) Life History Strategies in Gigasporaceae: Insight from Monoxenic Culture. In: Declerck S, Fortin JA, Strullu DG (eds) In Vitro Culture of Mycorrhizas. Springer, Berlin, Heidelberg, p 73–91Google Scholar
  16. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366Google Scholar
  17. Egerton-Warburton LM, Allen EB, Allen MF (2004) Conservation of mycorrhizal fungal communities under elevated atmospheric CO2 and anthropogenic nitrogen deposition. In: Sivasithamparama K, Dixon KW, Barret RL (eds) Microorganisms in plant conservation and biodiversity. Springer, Netherlands, p 19–43Google Scholar
  18. Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77(4):527–544Google Scholar
  19. Fjeldså J, Kessler M (1996) Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia. A contribution to sustainable natural resource management in the Andes. Copenhagen, Denmark: NordecoGoogle Scholar
  20. Geml J, Pastor N, Fernandez L, Pacheco S, Semenova T, Becerra AG, Wicaksono CY, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 23(10):2452–2472PubMedGoogle Scholar
  21. Grêt-Regamey A, Brunner SH, Kienast F (2012) Mountain ecosystem services: Who cares?. Mount Res Dev 32(S1):S23–S34Google Scholar
  22. Grime JP (1979) Plant Strategies and Vegetation Processes. John Wiley & Sons, Chichester, New York, Brisbane,TorontoGoogle Scholar
  23. Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344Google Scholar
  24. Hart MM, Reader RJ, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93(6):1186–1194Google Scholar
  25. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310Google Scholar
  26. Hillebrand H (2004) On the Generality of the Latitudinal Diversity Gradient. Am Nat 163(2):192–211PubMedGoogle Scholar
  27. Hoorn C, Mosbrugger V, Mulch A, Antonelli A (2013) Biodiversity from mountain building. Nature Geoscience. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, 6, p 154Google Scholar
  28. Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185(3):631–647PubMedGoogle Scholar
  29. Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73(6):2034–2042Google Scholar
  30. Koske RE (1987) Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia 79(1):55–68Google Scholar
  31. La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc Biol Sci Ser B 277(1699):3401–3410Google Scholar
  32. Legendre P, Andersson MJ (1999) Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol Mon 69(1):1–24Google Scholar
  33. Lugo MA, Cabello MN (2002) Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Cordoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94(4):579–586PubMedGoogle Scholar
  34. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316(5832):1746–1748Google Scholar
  35. Marín C, Aguilera P, Cornejo P, Godoy R, Oehl F, Palfner G, Boy J (2016) Arbuscular mycorrhizal assemblages along contrasting Andean forests of Southern Chile. J soil Sci plant Nutr 16(4):916–929Google Scholar
  36. Matus F, Rumpel C, Neculman R, Panichini M, Mora ML (2014) Soil carbon storage and stabilisation in andic soils: A review. Catena 120:102–110Google Scholar
  37. Menoyo E, Renison D, Becerra AG (2009) Arbuscular mycorrhizas and performance of Polylepis australis trees in relation to livestock density. For Ecol Manag 258(12):2676–2682Google Scholar
  38. Moreira-Souza M, Trufem SFB, Gomes-Da-Costa SM, Cardoso EJ (2003) Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza 13(4):211–215PubMedGoogle Scholar
  39. Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288(1–2):81–90Google Scholar
  40. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858Google Scholar
  41. Nouhra E, Soteras F, Pastor N, Geml J (2018) Richness, species composition and functional groups in Agaricomycetes communities along a vegetation and elevational gradient in the Andean Yungas of Argentina. Biodivers Conserv 27(8):1849–1871Google Scholar
  42. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.5–2.
  43. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology 94(4):778–790Google Scholar
  44. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188(1):223–241Google Scholar
  45. Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, Põlme S, Reier Ü, Saks Ü, Schimann H, Thiéry O, Vasar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23(5):411–430Google Scholar
  46. Orlandi Costa HA, Stürmer SL, Ragonezi C, Grazziotti PH, Fonseca Santos Grazziotti DC, de Barros Silva E (2016) Species richness and root colonization of arbuscular mycorrhizal fungi in Syngonanthus elegans, an endemic and threatened species from the Cerrado domain in Brazil. Ciência Agrotecnologia 40(3):326–336Google Scholar
  47. Quintero I, Jetz W (2018) Global elevational diversity and diversification of birds. Nature 555:246–250PubMedGoogle Scholar
  48. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  49. Roberts DW (2013) labdsv: ordination and multivariate analysis for ecology package. Version 1.6–1.
  50. Robledo GL, Renison D (2010) Wood-decaying polypores in the mountains of central Argentina in relation to Polylepis forest structure and altitude. Fungal Ecology 3(3):178–184Google Scholar
  51. Robledo G, Urcelay C, Domínguez L, Rajchenberg M (2006) Taxonomy, ecology, and biogeography of polypores (Basidiomycetes) from Argentinian Polylepis woodlands. Can J Bot 84(10):1561–1572Google Scholar
  52. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421Google Scholar
  53. Senés-Guerrero C, Schüßler A (2016) A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers 77(1):317–333Google Scholar
  54. Smith SE, Read D (2008) Mycorrhizal symbiosis. Academic Press, Great BritainGoogle Scholar
  55. Soteras F, Grilli G, Cofré MN, Marro N, Becerra A (2015) Arbuscular mycorrhizal fungal composition in high montane forests with different disturbance histories in central Argentina. Appl Soil Ecol 85:30–37Google Scholar
  56. Soteras F, Coutinho Moreira B, Grilli G, Pastor N, Carneiro Mendes F, Ruela Mendes D, Renison D, Megumi Kasuya MC, de Souza FA, Becerra A (2016) Arbuscular mycorrhizal fungal diversity in rhizosphere spores versus roots of an endangered endemic tree from Argentina: Is fungal diversity similar among forest disturbance types?. Appl Soil Ecol 98:272–277Google Scholar
  57. Souza de Pontes JS, Oehl F, Donizete Pereira C, Torres de Toledo Machado C, Coyne D, Alves da Silva DK, Maia LC (2017) Diversity of arbuscular mycorrhizal fungi in the Brazilian’s Cerrado and in soybean under conservation and conventional tillage. Appl Soil Ecol 117–118:178–189Google Scholar
  58. Spatafora JW, Sung G-H, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schult M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98(6):1018–1028PubMedGoogle Scholar
  59. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz L. V, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346(6213): 1256688–1–10Google Scholar
  60. Treseder KK, Allen EB, Egerton-Warburton LM, Hart MM, Klironomos JN, Maherali H, Tedersoo, L (2018) Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework. J Ecol 106(2):480–489Google Scholar
  61. Vega GC, Pertierra LR, Olalla-Tárraga MÁ (2017a) MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Scientific Data 4:1–12Google Scholar
  62. Vega GC, Pertierra L, Olalla-Tárraga M (2017b) Data from: MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Dryad Digital Repository Google Scholar
  63. Velázquez MS, Stürmer SL, Bruzone C, Fontenla S, Barrera M, Cabello M (2016) Occurrence of arbuscular mycorrhizal fungi in high altitude sites of the Patagonian Altoandina region in Nahuel Huapi National Park (Argentina). Acta Bot Brasilica 30(4):521–531Google Scholar
  64. Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62Google Scholar
  65. Zuur AF, Ieno NI, Walker NJ, Saveliev AA, Smith MG (2009) Mixxed effects models and extensions in ecology with R, Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W (eds). Springer, Verlag, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Florencia Soteras
    • 1
    Email author
  • Eugenia Menoyo
    • 2
  • Gabriel Grilli
    • 3
  • Alejandra G. Becerra
    • 3
  1. 1.Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICETUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Grupo de Estudios Ambientales, IMASL, CONICETUniversidad Nacional de San LuisSan LuisArgentina
  3. 3.Laboratorio de Micología, IMBIV, CONICET, and Cátedra de Diversidad Biológica I, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations