Advertisement

Overview of the Mycorrhizal Fungi in South America

  • Mónica A. Lugo
  • Marcela C. Pagano
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

The advances in plant cataloging and the increase of studies on mycorrhiza in South America (SA) have led to the compilation of information to better understand the native ecosystems and their constraints. Selected environments ranging from natural to anthropized ecosystems were analyzed according to their fungal-endophyte-associations and fungal-symbionts occurrence in relation to relevant physical-chemical properties of soils of the principal biomes in SA. Considering conservation units, no National Park is under continuous research in SA and few ones have been investigated for mycorrhizal symbioses. Ectomycorrhizas, with scant host-tree species in SA, are also investigated in Argentina and Chile forestry and mostly in exotic trees in Brazil. The study of the mycorrhizas and mycorrhizal fungi ecology and their response to global change, which is urgently recommended, is still incipient. Further, the publication revisions showed that Brazil, Argentina, Chile, Venezuela, and Ecuador are the countries with more published reports. Studies on mycorrhizas have developed largely; however, most of them were concerned with diversity and morphology, while the applications of mycorrhizas in environmental issues are still limited. The cooperative work between researchers from the Northern Hemisphere and SA could lead to greater advances on the quick and improved knowledge of the wonderful SA ecosystems and their mycorrhizas. This chapter revises and discusses the advances in mycorrhizal fungi understanding drawing on recent research.

Keywords

Global change Mycorrhizal types Native biomes Plant diversity 

Notes

Acknowledgements

Mónica A. Lugo and Marcela C. Pagano wish to express their deepest gratitude to all the researchers who are the authors and co-authors of the chapters of this book and whose scientific contributions have made this book possible, as well as to all the researchers whose contributions were a starting point for this book, and which have complemented and broadened the knowledge of mycorrhizal fungi in South America. In addition, the authors are grateful for the help provided by the critical reading of English to Matilde M. Crespo and to Dr. Lucía V. Risio for her collaboration in the preparation of the Table on protected areas of SA.

References

  1. Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services — A global review. Geoderma 262:101–111CrossRefGoogle Scholar
  2. Aidar MPM, Carrenho R, Joly CA (2004) Aspects of arbuscular mycorrhizal fungi in an Atlantic Forest chronosequence in Parque Estadual Turístico do Alto Ribeira (PETAR), SP. Biota Neotropica 4:1–15CrossRefGoogle Scholar
  3. Amano T, Sutherland WJ (2013) Four barriers to the global understanding of biodiversity wealth, language, geographical location and security. Proc R Soc B 2013 280: 2012–2649Google Scholar
  4. Antoninka A, Reich PB, Collins Johnson N (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214PubMedCrossRefGoogle Scholar
  5. Araujo APP, Santana MC, Bonfim JA, Mescolotti DL, Cardoso EJBN (2018) Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Appl Soil Ecol in pressGoogle Scholar
  6. Assis PCR, Saggin Júnior OJ, Paulino HB et al. (2014) Arbuscular mycorrhizal fungi in “murundu fields” after conversion to farm systems in the cerrado. Rev Bras Ciênc Solo 38:1703–1711CrossRefGoogle Scholar
  7. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543–545PubMedCrossRefGoogle Scholar
  8. Barros F, Vinhos F, Rodrigues VT, Barberena FFVA, Fraga CN, Pessoa EM (2012) Orchidaceae. In: Forzza RC et al. (eds). Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de JaneiroGoogle Scholar
  9. Błaszkowski J (2012) Glomeromycota. W. Szafer Institute of Botany, Polish Academy of SciencesGoogle Scholar
  10. Błaszkowski J, Kozłowska A, Niezgoda P, Goto BT, Dalpé Y (2018) A new genus, Oehlia with Oehlia diaphana comb. nov. and an emended description of Rhizoglomus vesiculiferum comb. nov. in the Glomeromycotina. Nova Hedwigia 107:501–518CrossRefGoogle Scholar
  11. Bradford MA (2014) Good dirt with good friends. Nature 505: 486–487PubMedCrossRefGoogle Scholar
  12. Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115CrossRefGoogle Scholar
  13. Bueno CG, Marín C, Silva-Flores P, Aguilera P, Godoy R (2017) Think globally, research locally: emerging opportunities for mycorrhizal research in South America. New Phytol 215(4):1306–1309CrossRefGoogle Scholar
  14. Cabrera AL (1976) Regiones Fitogeográficas Argentinas. In: Enciclopedia Argentina de Agricultura y Ganadería, 2nd ed. ACME S.A.C.I., Argentina, 80 pGoogle Scholar
  15. Cabrera AL, Willink A (1980) Biogeografía de América Latina. OEA, Washington, DC (In Spanish)Google Scholar
  16. Cardoso da Silva JM and Bates JM (2002) Biogeographic Patterns and Conservation in the South American Cerrado: A tropical savanna hotspot. BioScience 52:225–233CrossRefGoogle Scholar
  17. Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19CrossRefGoogle Scholar
  18. Castillo CG, Borie F, Oehl F, Sieverding E (2016) Arbuscular mycorrhizal fungi biodiversity: prospecting in Southern-Central zone of Chile. A review. J Soil Science Plant Nutrition 16 (2):400–422Google Scholar
  19. Czerniak MJ, Stürmer SL (2015) On-farm production of mycorrhizal inoculum using residues from the forestry industry. Rev Bras Ciênc Solo 38(6):1712–1721CrossRefGoogle Scholar
  20. Corrales A, Henkel TW, Smith ME (2018) Ectomycorrhizal associations in the tropics – biogeography, diversity patterns and ecosystem roles. New Phytol online,  https://doi.org/10.1111/nph.15151 PubMedCrossRefGoogle Scholar
  21. da Silva IR, de Mello CMA, Neto RAF, da Silva DKA, de Melo AL, Oehl F, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Appl Soil Ecol 84:166–175CrossRefGoogle Scholar
  22. de Souza TAF, Rodriguez-Echeverría S, de Andrade LA, Freitas H (2016) Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid. Brazilian J Microbiol 47 (2):359–366CrossRefGoogle Scholar
  23. Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349: 6251CrossRefGoogle Scholar
  24. Detmann KSC, Leite TS, Oliveira Neto RR (2018) Arbuscular mycorrhizae and absence of cluster roots in the Brazilian Proteaceae Roupala montana Aubl. Symbiosis  https://doi.org/10.1007/s13199-018-0581-0 CrossRefGoogle Scholar
  25. Duarte LM, Bertini SCB, Stürmer SL, Lambais MR, Azevedo LCB (2018) Arbuscular mycorrhizal fungal communities in soils under three phytophysiognomies of the Brazilian Atlantic Forest. Acta Bot Brasilica.  https://doi.org/10.1590/0102-33062018abb0236 CrossRefGoogle Scholar
  26. Echeverría-Londoño S, Enquist BJ, Neves DM, Violle C et al. (2018) Plant Functional Diversity and the Biogeography of Biomes in North and South America. Front. Ecol. Evol. 6: 11–12,  https://doi.org/10.3389/fevo.2018.00219 CrossRefGoogle Scholar
  27. Flores R, Godoy R, Palfner G (1997) Morfo – anatomía de la ectomicorriza Cenococcum geophilum Fr. en Nothofagus alessandrii Esp. Gayana Bot 54(2):157–167Google Scholar
  28. Founoune H, Duponnois R, Bâd AM, El Bouamib F (2002). Influence of the dual arbuscular endomycorrhizal / ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. ex G. Don) in glasshouse conditions. Ann For Scie 59: 93–98CrossRefGoogle Scholar
  29. Freitas RO, Buscardo E, Nagy L, Maciel ABS, Carrenho R, Luizão RCC (2014) Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest. Mycorrhiza 24:21–32CrossRefGoogle Scholar
  30. Garrido N (1988) Agaricales sl und ihre Mykorrhizen in den Nothofagus-Wäldern MittelchilesGoogle Scholar
  31. Geml J, Pastor N, Fernández L, Pacheco S, Semenova T, Becerra AG, Wicaksono CY, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Molecular Ecology 23:2452–2472PubMedCrossRefGoogle Scholar
  32. Giovannetti M, Avio L (2002) Biotechnology of Arbuscular Mycorrhizas. Appl Mycol Biotechnol 2:275–310CrossRefGoogle Scholar
  33. Godoy R, Palfner G (1997) Ectomicorrizas en Nothofagus alpina (Poepp. & Endl.) Oerst. y N. dombeyi (Mirb. Oerst.) del sur de Chile. Boletín Micológico 12(1–2):55–61CrossRefGoogle Scholar
  34. Gomide PHO, Silva MLN, Soares CRFS et al. (2014) Arbuscular mycorrhizal fungi in vegetation types in the Pantanal of Nhecolândia, Mato Grosso do Sul, Brazil. Rev Bras Ciênc Solo 38:1114–1127CrossRefGoogle Scholar
  35. Goto BT, da Silva GA, Yano-Melo AM, Maia LC (2010) Checklist of the arbuscular mycorrhizal fungi (Glomeromycota) in the Brazilian semiarid. Mycotaxon 113:251–254CrossRefGoogle Scholar
  36. Goto BT, Silva GA, Assis DMA, Silva DKA, Souza RG, Ferreira ACA, Jobim K, Mello CMA, Vieira HEE, Maia LC, Oehl F. (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119:117–132CrossRefGoogle Scholar
  37. Grilli G, Urcelay C, Galetto L, Davison J, Vasar M, Saks Ü, Jairus T, Öpik M (2015) The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process. Environ Microbiol 17:2709–2720PubMedCrossRefGoogle Scholar
  38. Grupe AC, Vasco-Palacios AM, Boekhout T, Smith M, Henkel T (2016) Sarcodon in the Neotropics: four new species from Colombia and a key to selected species. Mycologia 108:791–805,  https://doi.org/10.3852/15-254 CrossRefPubMedGoogle Scholar
  39. Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153(2):335–344CrossRefGoogle Scholar
  40. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  41. Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microb Spectrum 5(4):FUNK-0052-2016.  https://doi.org/10.1128/microbiolspec.FUNK-0052-2016.
  42. Henkel TW, Aime MC, Chin MML, Miller S, Vilgalys R, Smith M (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodiversity and Conservation 21:2195–2220CrossRefGoogle Scholar
  43. Ijdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16PubMedCrossRefGoogle Scholar
  44. Jobim K, Santos Oliveira BI, Goto BT (2016) Checklist of the Glomeromycota in the Brazilian Savanna. Mycotaxon 131:255CrossRefGoogle Scholar
  45. Jobim K, Vista XM, Goto BT (2018) Updates on the knowledge of arbuscular mycorrhizal fungi (Glomeromycotina) in the Atlantic Forest biome – an example of very high species richness in Brazilian biomes. Mycotaxon 133 (1)CrossRefGoogle Scholar
  46. Joly CA, Assis MA, Bernacci LC, et al. (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotropica 12:123–145Google Scholar
  47. Kai W, Zhiwei Z (2006) Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in southwest China. Int Rev Hydrobiol 91:29–37CrossRefGoogle Scholar
  48. Kennedy P, Garibay-Orijel R, Higgins L, Angeles-Arguiz R (2011) Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography. Mycorrhiza 21(6):559–568PubMedCrossRefGoogle Scholar
  49. Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100 (7):1445–1457PubMedCrossRefGoogle Scholar
  50. Kumar P, Pagano M, O’Donovan A (2017) Mycosphere Essay 18: Biotechnological advances of beneficial fungi for plants. Mycosphere 8(3):445–455,  https://doi.org/10.5943/mycosphere/8/3/6 CrossRefGoogle Scholar
  51. Lekberg Y, Gibbons SM, Rosendahl S, Ramsey PW et al. (2013) Severe plant invasions can increase mycorrhizal fungal abundance and diversity. ISME J 7(7):1424–1433PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lekberg Y, Waller LP (2016) What drives differences in arbuscular mycorrhizal fungal communities among plant species? Fungal Ecol 24 B: 135–138CrossRefGoogle Scholar
  53. Lemes EM, Rodrigues GI, de Paula ADM, de Lima DT, Torres JLR (2016) Mycorrhizal associations in Cerrado soils: A review of benefits and management. Australian J Crop Science 10(11):1504–1510CrossRefGoogle Scholar
  54. Lugo MA, Molina MG, Crespo EM (2009) Arbuscular mycorrhizas and dark septate endophytes in bromeliads from South American arid environment. Symbiosis 47:17–21CrossRefGoogle Scholar
  55. Lugo MA, Reinhart KO, Menoyo E, Crespo EM, Urcelay C (2015) Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment. Mycorrhiza 25:85–95PubMedCrossRefGoogle Scholar
  56. Lugo MA et al. (2018) MICODIF: Manual de metodologías para el trabajo con hongos y sus simbiosis /− 1ª ed. – San Luis: Nueva Editorial Universitaria – U.N.S.L.Google Scholar
  57. Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics 4:1–6CrossRefGoogle Scholar
  58. Mahecha-Vásquez G, Sierra S, Posada R (2017) Diversity indices using arbuscular mycorrhizal fungi to evaluate the soil state in banana crops in Colombia Appl Soil Ecol 109:32–39CrossRefGoogle Scholar
  59. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748PubMedCrossRefGoogle Scholar
  60. Marín C, Aguilera P, Oehl F, Godoy R (2017) Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. J Soil Science Plant Nutrit 17 (4):966–984CrossRefGoogle Scholar
  61. Marinho F, Silva GA, Ferreira ACA, Veras JSN, Sousa NMF, Goto BT, Maia L, Oehl F (2014) Bulbospora minima, a new genus and a new species in the Glomeromycetes from semi-arid Northeast Brazil. Sydowia 66:313–323Google Scholar
  62. Marins JF, Rosilaine Carrenho R, Sidinei Magela Thomaz SM (2009) Occurrence and coexistence of arbuscular mycorrhizal fungi and dark septate fungi in aquatic macrophytes in a tropical river–floodplain system. Aquatic Botany 91(1):13–19CrossRefGoogle Scholar
  63. Meadow JF, Zabinski CA (2012) Linking symbiont community structures in a model arbuscular mycorrhizal system. New Phytol 194:800–809PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mello CMA, da Silva IR, Pontes JS, Goto BT, da Silva GA, Maia LC (2012) Diversity of arbuscular mycorrizal fungi in an area of Caatinga, PE, Brazil. Acta Botanica Brasilica 26(4):938–943CrossRefGoogle Scholar
  65. Moreira M, Zucchi MI, Gomes JE, Tsai SM, Alves-Pereira A, Cardoso EJBN (2016) Araucaria angustifolia aboveground roots presented high arbuscular mycorrhizal fungal colonization and diversity in the Brazilian Atlantic Forest. Pedosphere 26(4):561–566CrossRefGoogle Scholar
  66. Mosquera-Espinosa AT, Bayman P, Otero JT (2010) Ceratobasidium como hongo micorrízico de orquídeas en Colombia. Acta Agronom 59:316–326Google Scholar
  67. Mosquera-Espinosa AT, Bayman PP, Prado GA, Gomez-Carabali A, Otero JT (2013) Pathogenicity of orchid mycorrhizal fungi (Ceratobasidium sp.) on rice and biocontrol of Rhizoctonia solani sheath blight. Mycologia 105:141–150PubMedCrossRefPubMedCentralGoogle Scholar
  68. Moyersoen B (2006) Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 172 (4):589–794,  https://doi.org/10.1111/j.1469-8137.2006.01860.x CrossRefGoogle Scholar
  69. Moyersoen B, Fitter A, Alexander I (1998a) Spatial distribution of ectomycorrhizas and arbuscular mycorrhizas in Korup National Park rainforest, Cameroon, in relation to edaphic parameters. New Phytol 139(2):311–320CrossRefGoogle Scholar
  70. Moyersoen B, Alexander I, Fitter A (1998b) Phosphorus nutrition of ectomycorrhizal and arbuscular mycorrhizal tree seedlings from a lowland tropical rain forest in Korup National Park, Cameroon. J Trop Ecol 14(1):47–61CrossRefGoogle Scholar
  71. Moyersoen B, Becker P, Alexander I (2001). Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests? New Phytol (2001) 150:591–599CrossRefGoogle Scholar
  72. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  73. Nouhra E, Urcelay C, Longo S, Tedersoo L (2013) Ectomycorrhizal fungal communities associated to Nothofagus species in Northern Patagonia Mycorrhiza 23:487–496PubMedCrossRefGoogle Scholar
  74. Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283PubMedCrossRefGoogle Scholar
  75. Oehl F, Sieverding E, Palenzuela J, Ineichen K, Silva GA (2011a) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199PubMedPubMedCentralCrossRefGoogle Scholar
  76. Oehl F, Silva DKA, Maia LC, Sousa NMF, Vieira HEE, Silva GA (2011b) Orbispora gen. nov., ancestral in the Scutellosporaceae (Glomeromycetes). Mycotaxon 116:161–169CrossRefGoogle Scholar
  77. Oehl F, Sánchez–Castro I, Palenzuela J, Silva GA (2014) Palaeospora spainii, a new arbuscular mycorrhizal fungus from Swiss agricultural soils. Nova Hedwigia 101:1–2Google Scholar
  78. Oeser RA, Stroncik N, Moskwa LM, Bernhard N, Schaller M, Canessa R et al (2018) Chemistry and microbiology of the Critical Zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera. Catena 170:183–203CrossRefGoogle Scholar
  79. Oki Y, Goto BT, Jobim K, Rosa LH, Costa Ferreira M, Silva Coutinho E, de Azevedo Xavier JH, Fernanda Carvalho, de Souza Moreira FM, de Souza FA, Louro Berbara RL, Fernandes GW (2016) Arbuscular Mycorrhiza and Endophytic Fungi in Ruspestrian Grasslands. In: GW Fernandes (ed) Ecology and Conservation of Mountain top Grasslands in Brazil, Springer, Switzerland.  https://doi.org/10.1007/978-3-319-29808-5-8, p 157–179CrossRefGoogle Scholar
  80. Onguene N, Kuyper T (2002) Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of south Cameroon. Mycorrhiza 12: 13–17PubMedCrossRefGoogle Scholar
  81. Otero JT, Bayman P (2009) Symbiotic vs. asymbiotic seed germination in epiphytic orchids. Acta Agronom 58:270–276Google Scholar
  82. Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of mycorrhizal fungi from tropical orchids. Amer J Bot 89:1852–1858CrossRefGoogle Scholar
  83. Otero JT, Ackerman JD, Bayman P (2004) Differences in mycorrhizal specificity between two tropical orchids. Molec Ecol 13:2393–2404CrossRefGoogle Scholar
  84. Otero JT, Bayman P, Ackerman JD (2005) Individual variation in plant and fungus for mycorrhizal seed germination in an epiphytic orchid. Evol Eco. 19:29–43CrossRefGoogle Scholar
  85. Otero JT, Mosquera AT, Flanaga NS (2013) Tropical orchid mycorrhizae: potential applications in orchid conservation, commercialization, and beyond. Lankesteriana 13(1–2):57–63Google Scholar
  86. Oyarzabal M, Clavijo J, Oakley L, Biganzoli F, Tognetti P, Barberis I, Maturo HM, Aragón R, Campanello PI, Prado D, Oesterheld M, León RJ.C (2018) Vegetation units of Argentina. Ecología Austral 28:040–063CrossRefGoogle Scholar
  87. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188(1) 223–241CrossRefGoogle Scholar
  88. Öpik, M., J. Davison, M. Moora, M. Zobel (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences Botany 92:135–147CrossRefGoogle Scholar
  89. Pagano MC, Cabello MN (2012) Mycorrhizas in natural and restored riparian zones. In: Pagano MC, editor Mycorrhiza: Occurrence and Role in Natural and Restored Environments. Nova Science Publishers, Hauppauge, NY. ISBN: 978-1-61209-226-3.Google Scholar
  90. Pagano MC, Utida MK, Gomes EA, Marriel IE, Cabello MN, Scotti MR (2011) Plant-type dependent changes in arbuscular mycorrhizal communities as soil quality indicator in semi-arid Brazil. Ecological Indicators 11 (2):643–650CrossRefGoogle Scholar
  91. Pagano MC, Zandavalli RB, Araújo FS (2013) Biodiversity of arbuscular mycorrhizas in three vegetational types from the semiarid of Ceará State, Brazil. Applied Soil Ecology 67: 37–46CrossRefGoogle Scholar
  92. Pagano MC, Oehl F, Silva GA, Maia LC, Silva DK, Cabello MN (2016) Advances in Arbuscular mycorrhizal taxonomy. In: Pagano MC (ed) Recent Advances on Mycorrhizal Fungi. Springer Nature, Switzerland, p 15–21CrossRefGoogle Scholar
  93. Pagano MC, Correa EJA, Duarte NF, Yelikbayev B, O’Donovan A, Gupta VK (2017) Advances in Eco-Efficient Agriculture: The Plant-Soil Mycobiome. Agriculture 7:14  https://doi.org/10.3390/agriculture7020014 CrossRefGoogle Scholar
  94. Palfner G (2001) Taxonomische Studien an Ektomykorrhizen aus den-Nothofagus-Wäldern MittelsüdchilesGoogle Scholar
  95. Palfner G, Godoy R (1996) “Nothofagirhiza vinicolor” + Nothofagus pumilio (Poepp. et Endl.) Kraser. Descriptions of Ectomycorrhizae 1, 65–70Google Scholar
  96. Pärtel M, Öpik M, Moora M, Tedersoo L, Szava-Kovats R, Rosendahl S, Rillig MC, Lekberg Y, Kreft H, Helgason T, Eriksson O, Davison J, de Bello F, Caruso T, Zobel M (2017) Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytol 216 (1):227–238PubMedCrossRefGoogle Scholar
  97. Patreze CM, De Paulo EN, Martinelli AP, Cardoso EJB, Tsai SM (2009) Characterization of fungal soil communities by F-RISA and arbuscular mycorrhizal fungi from Araucaria angustifolia forest soils after replanting and wildfire disturbances. Symbiosis 48(1–3):164–172CrossRefGoogle Scholar
  98. Pereira MC, Moreira Vieira N, Tótola MR, Kasuya MCM (2011) Total fatty acid composition in the characterization and identification of orchid mycorrhizal fungi Epulorhiza spp. Rev Bras Ciênc Solo 35(4):1159–1165CrossRefGoogle Scholar
  99. Pereira CMR, da Silva DKA, Ferreira ACA, Goto BT, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi in Atlantic forest areas under different land uses. Agriculture, Ecosystems and Environment 185:245–252CrossRefGoogle Scholar
  100. Pereira CMR, Silva DKA, Goto BT, Rosendahl S, Maia L (2018) Management practices may led to loss of arbuscular mycorrhizal fungal diversity in protected areas of the Brazilian Atlantic Forest. Fungal Ecol 34:50–58CrossRefGoogle Scholar
  101. Pontes JS, Oehl F, Pereira CD, Machado CTT, Coyne D, da Silva DKA, Maia LC (2017) Diversity of arbuscular mycorrhizal fungi in the Brazilian’s Cerrado and in soybean under conservation and conventional tillage Applied Soil Ecology:178–189Google Scholar
  102. Radhika KP, Rodrigues BF (2007) Arbuscular Mycorrhizae in association with aquatic and marshy plant species in Goa, India. Aquatic Botany 86(3):291–294CrossRefGoogle Scholar
  103. Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531PubMedCrossRefGoogle Scholar
  104. Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified. Appl Environm Microbiol 67:495–498CrossRefGoogle Scholar
  105. Rivero Mega MS, Crespo EM, Molina MG, Lugo MA (2014) Diversidad diferencial de esporas de Glomeromycota en la rizosfera de bromeliáceas nativas del Parque Nacional Sierra de las Quijadas (San Luis, Argentina). Bol Soc Argent Bot 49:317–325Google Scholar
  106. Riviere T, Diedhiou A, Diabate M, Senthilarasu G, Natarajan K, Verbeken A, Buyck B, Dreyfus B, Bena G, Ba A (2007) Genetic diversity of ectomycorrhizal Basidiomycetes from African and Indian tropical rain forests. Mycorrhiza 17:415–428PubMedCrossRefGoogle Scholar
  107. Schalamuk S, Druille M, Cabello MN (2013) Capítulo 3. Hongos formadores de micorrizas arbusculares: Influencia de las prácticas agronómicas sobre su diversidad y dinámica de colonización. Arbuscular mycorrhizal fungi: Influence of agronomic practices on diversity and dynamics of colonization. In (García de Salomone E, Vázquez S, Penna C, Cassan F (eds) Rizosfera, biodiversidad y agricultura sustentable, TIRBAS, Río Cuarto, Argentina, pp 47–71Google Scholar
  108. Schueffler A, Anke T (2014) Fungal natural products in research and development. Nat Prod Rep 31:1425–1448PubMedCrossRefGoogle Scholar
  109. Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Gloucester, in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich and Oregon State UniversityGoogle Scholar
  110. Senés-Guerrero C, Schüßler A (2016) A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers 77:317–333CrossRefGoogle Scholar
  111. Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Eschborn: Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmnBH, Esch boranGoogle Scholar
  112. Silva IR, de Mello CMA, Ferreira Neto RA, da Silva DKA, de Mello AL, Oehl F, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Appl. Soil Ecol. 84:166–175CrossRefGoogle Scholar
  113. Silva IR, da Silva, DKA, de Souza FA, Oehl F, Maia LC (2017) Changes in arbuscular mycorrhizal fungal communities along a river delta island in northeastern Brazil. Acta Oecologica 79:8–17CrossRefGoogle Scholar
  114. Smith ME, Henkel TW, Uehling JK, Fremier AK, Clarke HD, Vilgalys R. (2013) The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea. PLoS ONE 8(1): e55160PubMedPubMedCentralCrossRefGoogle Scholar
  115. Smith ME, Henkel TW, Williams GC, Aime MC, Fremier AK, Vilgalys R (2017) Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. New Phytol 215(1):443–453PubMedCrossRefGoogle Scholar
  116. Song H, Zhong Z, Yang W, Chen Q (2011) Analysis of the activities of protective enzymes in Bidens pilosa L. inoculated with Glomus mosseae under drought stress. Shengtai Xuebao/ Acta Ecologica Sinica 31:2471–2477Google Scholar
  117. Sosa-Hernández MA, Roya J, Hempel S, Kautz T, Köpke U, Uksad M, Schloter M, Caruso T, Rillig MC (2018) Subsoil arbuscular mycorrhizal fungal communities in arable soil differ from those in topsoil Soil Biol Biochem 117:83–86CrossRefGoogle Scholar
  118. Soteras F, Coutinho Moreira B, Grilli G, Pastor N, Carneiro Mendes F, Ruela Mendes D, Renison D, Megumi Kasuya MC, de Souza FA, Becerra A (2016) Arbuscular mycorrhizal fungal diversity in rhizosphere spores versus roots of an endangered endemic tree from Argentina: is fungal diversity similar among forest disturbance types? Appl Soil Ecol 98:272–277CrossRefGoogle Scholar
  119. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046PubMedPubMedCentralCrossRefGoogle Scholar
  120. Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22:247–258PubMedCrossRefGoogle Scholar
  121. Stürmer SL, Stürmer R, Pasqualini D (2013) Taxonomic Diversity and community structure of arbuscular mycorrhizal fungi (Phylum Glomeromycota) in three maritime sand dunes in Santa Catarina State, South Brazil. Fungal Ecology 6:27–36CrossRefGoogle Scholar
  122. Stürmer SL, Bever JD, Morton JB (2018) Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza 28:587–603PubMedCrossRefGoogle Scholar
  123. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorhiza 20 (4):217–263CrossRefGoogle Scholar
  124. Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175:321–333PubMedCrossRefGoogle Scholar
  125. Tedersoo L, Bahram M, Toots M, Diédhiou A, Henkel t, Kjøller R, Morris MH, Nara K, Nouhra E, Peay K, Põlme, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170PubMedCrossRefGoogle Scholar
  126. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz L. V, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688–1–10CrossRefGoogle Scholar
  127. Teixeira AFS, Kemmelmeier K, Marascalchi MN, Stürmer SL, Carneiro MAC, Moreira FMS (2017) Arbuscular mycorrhizal fungal communities in an iron mining area and its surroundings: Inoculum potential, density, and diversity of spores related to soil properties. Ciência e Agrotecnologia, 41(5):511–525CrossRefGoogle Scholar
  128. Truong C, Mujic A, Healy R, Kuhar F, Furci G, Torres D, Niskanen T, Sandoval-Leiva P, Fernández N, Escobar J, Moretto A, Palfner G, Pfister D, Nouhra E, Swenie R, Sánchez-García M, Matheny B, Smith M (2017). How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214:913–919PubMedCrossRefGoogle Scholar
  129. Turrini A, Giovanetti M (2012) Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza 22:81–97,  https://doi.org/10.1007/s00572-011-0419-6 CrossRefPubMedGoogle Scholar
  130. Ulloa Ulloa C, Acevedo-Rodríguez P, Beck S, Belgrano MJ, Bernal R, Berry PE, Brako L, Celis M, Davidse G, Forzza RC, S. Gradstein R, Hokche O, León B, León-Yánez S, Magill RE, Neill DA, Nee M, Raven PH, Stimmel H, Strong MT, Villaseñor JL, Zarucchi JL, Zuloaga FO, Jørgensen PM (2017) An integrated assessment of the vascular plant species of the Americas. Science 358:1614–1617PubMedCrossRefGoogle Scholar
  131. Vasco-Palacios AM (2016) Ectomycorrhizal fungi in Amazonian tropical forests in Colombia. Doctoral Thesis, Utrecht University. Editorial Panamericana, Bogotá. 201 pGoogle Scholar
  132. Vasco-Palacios AM, López-Quintero C, Franco-Molano AE, Boekhou, T (2014) Austroboletus amazonicus sp. nov. and Fistulinella campinaranae var. scrobiculata, two commonly occurring boletes from a forest dominated by Pseudomonotes tropenbosii (Dipterocarpaceae) in Colombian Amazonia. Mycologia 106: 1004–1014. Vasco-Palacios AM, Hernandez J, Peñuela-Mora MC, Franco-Molano AE, Boekhout T (2018) Ectomycorrhizal fungi diversity in a white sand forest in western Amazonia. Fungal Ecol 31:9–18PubMedCrossRefGoogle Scholar
  133. Vasco-Palacios AM, Hernandez J, Peñuela-Mora MC, Franco-Molano AE, Boekhou, TE (2018) Ectomycorrhizal fungi diversity in a white sand forest in western Amazonia. Fungal Ecology 31:9–18CrossRefGoogle Scholar
  134. Varga S (2015) On the importance of details in arbuscular mycorrhizal research. Appl Soil Ecol 87:87–90CrossRefGoogle Scholar
  135. Veblen TT, Young KR, Orme AR (eds) (2015) The physical geography of South America. Oxford University PressGoogle Scholar
  136. Velázquez MS, Cabello M, Irrazabal G, Godeas A (2008) Acaulosporaceae from El Palmar National Park, Entre Ríos, Argentina. Mycotaxon 103:171–187Google Scholar
  137. Velázquez S, Cabello M (2011) Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from El Palmar National Park soils. Eur J Soil Biol 47:230–235CrossRefGoogle Scholar
  138. Velázquez M, Cabello M, Barrera M (2013) Composition and structure of arbuscular-mycorrhizal communities in El Palmar National Park, Argentina. Mycologia 105(3):509–520PubMedCrossRefGoogle Scholar
  139. Velázquez MS, Stürmer SL, Bruzone C, Fontenla S, Barrera M, Cabello M (2016) Occurrence of arbuscular mycorrhizal fungi in high altitude sites of the Patagonian Altoandina region in Nahuel Huapi National Park (Argentina). Acta Bot Bras 30(4):521–531CrossRefGoogle Scholar
  140. Walker C, Gollotte A, Redecker D (2018) A new genus, Planticonsortium (Mucoromycotina), and new combination (P. tenue), for the fine root endophyte, Glomus tenue (basionym Rhizophagus tenuis). Mycorrhiza 28:213–219PubMedCrossRefGoogle Scholar
  141. Wetzel K, Silva GA, Matczinski U, Oehl F, Fester T (2014) Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol Biochem 72:88–96CrossRefGoogle Scholar
  142. Young BE, Josse C, Stern M, Vasconez S, Olander J, Smyth R, Zador M, Sánchez de Lozada A, Comer PJ, Moull K, Echavarría M, Hak J (2015) Hotspot de biodiversidad de los Andes tropicales. In: Resumen técnico del perfil del ecosistema. Washington, D.C.: NatureServer & EcoDecisiónGoogle Scholar
  143. Zhang F-J, Qiao Li Q, Chen F-X, Xu H-Y, Inderjit, Wan F-H (2017) Arbuscular mycorrhizal fungi facilitate growth and competitive ability of an exotic species Flaveria bidentis. Soil Biol Biochem 115:275–284CrossRefGoogle Scholar
  144. Zangaro W, Rostirola LV, de Souza PB, de Almeida Alves R, Lescano LEAM, Rondina ABL, Nogueira MA, Carrenho R (2013) Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 23(3):221–233PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mónica A. Lugo
    • 1
  • Marcela C. Pagano
    • 2
  1. 1.Biological Sciences, National University of San LuisGrupo MICODIF (Micología, Diversidad e Interacciones Fúngicas)/IMIBIO (Instituto Multidisciplinario de Investigaciones Biológicas)-CONICET-CCT SLSan LuisArgentina
  2. 2.Federal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations