Queueing Systems with Structured Markov Chains

  • László Lakatos
  • László Szeidl
  • Miklós Telek


In the previous chapters we have studied queueing systems with different interarrival and service time distributions. Chapter  7 is devoted to the analysis of queueing systems with exponential interarrival and service time distributions.


  1. 1.
    He, Q.M.: Fundamentals of Matrix-Analytic Methods. Springer, New York (2014)CrossRefGoogle Scholar
  2. 2.
    Horváth, G., Van Houdt, B., Telek, M.: Commuting matrices in the queue length and sojourn time analysis of MAP/MAP/1 queues. Stoch. Model. 30(4), 554–575 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM Press, Philadelphia (1999)CrossRefGoogle Scholar
  4. 4.
    Lucantoni, D.M.: New results on the single server queue with a batch Markovian arrival process. Commun. Stat. Stoch. Models 7(1), 1–46 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Neuts, M.F.: Matrix Geometric Solutions in Stochastic Models. Johns Hopkins University Press, Baltimore (1981)zbMATHGoogle Scholar
  6. 6.
    Razumchik, R., Telek, M.: Delay analysis of a queue with re-sequencing buffer and Markov environment. Queueing Syst. 82(1), 7–28 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sengupta, B.: The semi-Markovian queue: theory and applications. Stoch. Models 6(3), 383–413 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • László Lakatos
    • 1
  • László Szeidl
    • 2
  • Miklós Telek
    • 3
  1. 1.Eotvos Lorant UniversityBudapestHungary
  2. 2.Obuda UniversityBudapestHungary
  3. 3.Technical University of BudapestBudapestHungary

Personalised recommendations