Introduction to Queueing Systems

  • László Lakatos
  • László Szeidl
  • Miklós Telek


The theory of queueing systems dates back to the seminal work of A.K. Erlang (1878–1929), who worked for the telecom company in Copenhagen and studied the telephone traffic in the early twentieth century. To this today the terminology of queueing theory is closely related to telecommunications (e.g., channel, call, idle/busy, queue length, and utilization).


  1. 1.
    Harchol-Balter, M.: Performance Modeling and Design of Computer Systems: Queueing Theory in Action. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  2. 2.
    Little, J.D.C.: A proof of the queuing formula: L =AW. Oper. Res. 9, 383–387 (1961)CrossRefGoogle Scholar
  3. 3.
    Little, J.D.C.: Little’s law as viewed on its 50th anniversary. Oper. Res. 59(3), 536–549 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Saaty, T.: Elements of Queueing Theory. McGraw-Hill, New York (1961)zbMATHGoogle Scholar
  5. 5.
    Stidham, S.: A last word on l= λ w. Oper. Res. 22(2), 417–421 (1974)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Whitt, W.: A review of L = λW and extensions. Queueing Syst. 9(3), 235–268 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wolff, R.W.: Poisson arrivals see time averages. Oper. Res. 30(2), 223–231 (1982)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wolff, R.W.: Little’s law and related results. In: Wiley Encyclopedia of Operations Research and Management Science, vol. 4, pp. 2828–2841. Wiley, New York (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • László Lakatos
    • 1
  • László Szeidl
    • 2
  • Miklós Telek
    • 3
  1. 1.Eotvos Lorant UniversityBudapestHungary
  2. 2.Obuda UniversityBudapestHungary
  3. 3.Technical University of BudapestBudapestHungary

Personalised recommendations