Surgical Versus Non-surgical Management of Early T-Stage Oropharyngeal Cancer

  • Joseph Zenga
  • Jeremy D. RichmonEmail author
Part of the Difficult Decisions in Surgery: An Evidence-Based Approach book series (DDSURGERY)


The management of early T-stage oropharyngeal cancer remains a controversial topic with an absence of high-level evidence supporting one treatment approach over another. The current status of best evidence demonstrates oncologic equivalency of these treatment modalities. The choice between surgical and non-surgical management of early stage OPSCC is therefore quite nuanced and is driven by patient selection, functional outcomes, cost-effectiveness, and patient preference. Transoral surgery alone in the appropriately selected patient has improved overall functional results as compared with definitive radiotherapy, however when adjuvant (chemo)radiotherapy is needed functional outcomes are worse and do not appear better than definitive radiotherapy alone. There are currently many ongoing de-intensification trials which will further inform which patients will benefit the most from a functional standpoint while preserving excellent oncologic outcomes.


Oropharyngeal cancer Tongue Tonsil Transoral robotic Transoral laser microsurgery TORS TLMS HPV Radiation 


  1. 1.
    National Comprehensive Cancer Network (NCCN). Head and neck cancer. Published 2014. Accessed 12 Jan 2015.
  2. 2.
    Mourad M, Jetmore T, Jategaonkar AA, Moubayed S, Moshier E, Urken ML. Epidemiological trends of head and neck cancer in the United States: a SEER population study. J Oral Maxillofac Surg. 2017;75(12):2562–72.CrossRefGoogle Scholar
  3. 3.
    Weatherspoon DJ, Chattopadhyay A, Boroumand S, Garcia I. Oral cavity and oropharyngeal cancer incidence trends and disparities in the United States: 2000–2010. Cancer Epidemiol. 2015;39(4):497–504.CrossRefGoogle Scholar
  4. 4.
    Megwalu UC, Sirjani D, Devine EE. Oropharyngeal squamous cell carcinoma incidence and mortality trends in the United States, 1973–2013. Laryngoscope. 2018;128(7):1582–8.CrossRefGoogle Scholar
  5. 5.
    Petrelli F, Sarti E, Barni S. Predictive value of human papillomavirus in oropharyngeal carcinoma treated with radiotherapy: an updated systematic review and meta-analysis of 30 trials. Head Neck. 2014;36(5):750–9.CrossRefGoogle Scholar
  6. 6.
    Wang MB, Liu IY, Gornbein JA, Nguyen CT. HPV-positive oropharyngeal carcinoma: a systematic review of treatment and prognosis. Otolaryngol Head Neck Surg. 2015;153(5):758–69.CrossRefGoogle Scholar
  7. 7.
    Members NP. NCCN Clinical Practice Guidelines in Oncology: head and neck cancer. Published 2017. Accessed 28 Aug 2017.
  8. 8.
    Lydiatt WM, Patel SG, O’Sullivan B, et al. Head and neck cancers—major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):122–37.CrossRefGoogle Scholar
  9. 9.
    Howard J, Masterson L, Dwivedi RC, et al. Minimally invasive surgery versus radiotherapy/chemoradiotherapy for small-volume primary oropharyngeal carcinoma. Cochrane Database Syst Rev. 2016;12:CD010963.PubMedGoogle Scholar
  10. 10.
    Rubek N, Channir HI, Charabi BW, et al. Primary transoral robotic surgery with concurrent neck dissection for early stage oropharyngeal squamous cell carcinoma implemented at a Danish head and neck cancer center: a phase II trial on feasibility and tumour margin status. Eur Arch Otorhinolaryngol. 2017;274(5):2229–37.CrossRefGoogle Scholar
  11. 11.
    Cracchiolo JR, Baxi SS, Morris LG, et al. Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features: National Cancer Data Base. Cancer. 2016;122(10):1523–32.CrossRefGoogle Scholar
  12. 12.
    de Almeida JR, Byrd JK, Wu R, et al. A systematic review of transoral robotic surgery and radiotherapy for early oropharynx cancer: a systematic review. Laryngoscope. 2014;124(9):2096–102.CrossRefGoogle Scholar
  13. 13.
    Kelly K, Johnson-Obaseki S, Lumingu J, Corsten M. Oncologic, functional and surgical outcomes of primary Transoral Robotic Surgery for early squamous cell cancer of the oropharynx: a systematic review. Oral Oncol. 2014;50(8):696–703.CrossRefGoogle Scholar
  14. 14.
    Morisod B, Simon C. Meta-analysis on survival of patients treated with transoral surgery versus radiotherapy for early-stage squamous cell carcinoma of the oropharynx. Head Neck. 2016;38(Suppl 1):E2143–50.CrossRefGoogle Scholar
  15. 15.
    O’Rorke MA, Ellison MV, Murray LJ, Moran M, James J, Anderson LA. Human papillomavirus related head and neck cancer survival: a systematic review and meta-analysis. Oral Oncol. 2012;48(12):1191–201.CrossRefGoogle Scholar
  16. 16.
    Garden AS, Morrison WH, Wong PF, et al. Disease-control rates following intensity-modulated radiation therapy for small primary oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2007;67(2):438–44.CrossRefGoogle Scholar
  17. 17.
    Eisbruch A, Harris J, Garden AS, et al. Multi-institutional trial of accelerated hypofractionated intensity-modulated radiation therapy for early-stage oropharyngeal cancer (RTOG 00-22). Int J Radiat Oncol Biol Phys. 2010;76(5):1333–8.CrossRefGoogle Scholar
  18. 18.
    Cosmidis A, Rame JP, Dassonville O, et al. T1–T2 NO oropharyngeal cancers treated with surgery alone. A GETTEC study. Eur Arch Otorhinolaryngol. 2004;261(5):276–81.CrossRefGoogle Scholar
  19. 19.
    Dabas S, Gupta K, Ranjan R, Sharma AK, Shukla H, Dinesh A. Oncological outcome following de-intensification of treatment for stage I and II HPV negative oropharyngeal cancers with transoral robotic surgery (TORS): a prospective trial. Oral Oncol. 2017;69:80–3.CrossRefGoogle Scholar
  20. 20.
    Moore EJ, Ebrahimi A, Price DL, Olsen KD. Retropharyngeal lymph node dissection in oropharyngeal cancer treated with transoral robotic surgery. Laryngoscope. 2013;123(7):1676–81.CrossRefGoogle Scholar
  21. 21.
    Chung EJ, Kim GW, Cho BK, Cho SJ, Yoon DY, Rho YS. Retropharyngeal lymph node metastasis in 54 patients with oropharyngeal squamous cell carcinoma who underwent surgery-based treatment. Ann Surg Oncol. 2015;22(9):3049–54.CrossRefGoogle Scholar
  22. 22.
    Troob S, Givi B, Hodgson M, et al. Transoral robotic retropharyngeal node dissection in oropharyngeal squamous cell carcinoma: patterns of metastasis and functional outcomes. Head Neck. 2017;39(10):1969–75.CrossRefGoogle Scholar
  23. 23.
    Selek U, Garden AS, Morrison WH, El-Naggar AK, Rosenthal DI, Ang KK. Radiation therapy for early-stage carcinoma of the oropharynx. Int J Radiat Oncol Biol Phys. 2004;59(3):743–51.CrossRefGoogle Scholar
  24. 24.
    Jayaram SC, Muzaffar SJ, Ahmed I, Dhanda J, Paleri V, Mehanna H. Efficacy, outcomes, and complication rates of different surgical and nonsurgical treatment modalities for recurrent/residual oropharyngeal carcinoma: a systematic review and meta-analysis. Head Neck. 2016;38(12):1855–61.CrossRefGoogle Scholar
  25. 25.
    Routman DM, Funk RK, Tangsriwong K, et al. Relapse rates with surgery alone in human papillomavirus-related intermediate- and high-risk group oropharynx squamous cell cancer: a multi-institutional review. Int J Radiat Oncol Biol Phys. 2017;99(4):938–46.CrossRefGoogle Scholar
  26. 26.
    Sims JR, Van Abel K, Martin EJ, et al. Management of recurrent and metastatic HPV-positive oropharyngeal squamous cell carcinoma after transoral robotic surgery. Otolaryngol Head Neck Surg. 2017;157(1):69–76.CrossRefGoogle Scholar
  27. 27.
    Janot F, de Raucourt D, Benhamou E, et al. Randomized trial of postoperative reirradiation combined with chemotherapy after salvage surgery compared with salvage surgery alone in head and neck carcinoma. J Clin Oncol. 2008;26(34):5518–23.CrossRefGoogle Scholar
  28. 28.
    Dawe N, Patterson J, O’Hara J. Functional swallowing outcomes following treatment for oropharyngeal carcinoma: a systematic review of the evidence comparing trans-oral surgery versus non-surgical management. Clin Otolaryngol. 2016;41(4):371–85.CrossRefGoogle Scholar
  29. 29.
    Dziegielewski PT, Teknos TN, Durmus K, et al. Transoral robotic surgery for oropharyngeal cancer: long-term quality of life and functional outcomes. JAMA Otolaryngol Head Neck Surg. 2013;139(11):1099–108.CrossRefGoogle Scholar
  30. 30.
    Ryzek DF, Mantsopoulos K, Künzel J, et al. Early stage oropharyngeal carcinomas: comparing quality of life for different treatment modalities. Biomed Res Int. 2014;2014:421964.CrossRefGoogle Scholar
  31. 31.
    Choby GW, Kim J, Ling DC, et al. Transoral robotic surgery alone for oropharyngeal cancer: quality-of-life outcomes. JAMA Otolaryngol Head Neck Surg. 2015;141(6):499–504.CrossRefGoogle Scholar
  32. 32.
    van Loon JW, Smeele LE, Hilgers FJ, van den Brekel MW. Outcome of transoral robotic surgery for stage I–II oropharyngeal cancer. Eur Arch Otorhinolaryngol. 2015;272(1):175–83.CrossRefGoogle Scholar
  33. 33.
    Ling DC, Chapman BV, Kim J, et al. Oncologic outcomes and patient-reported quality of life in patients with oropharyngeal squamous cell carcinoma treated with definitive transoral robotic surgery versus definitive chemoradiation. Oral Oncol. 2016;61:41–6.CrossRefGoogle Scholar
  34. 34.
    Achim V, Bolognone RK, Palmer AD, et al. Long-term functional and quality-of-life outcomes after transoral robotic surgery in patients with oropharyngeal cancer. JAMA Otolaryngol Head Neck Surg. 2017.
  35. 35.
    Sethia R, Yumusakhuylu AC, Ozbay I, et al. Quality of life outcomes of transoral robotic surgery with or without adjuvant therapy for oropharyngeal cancer. Laryngoscope. 2018;128(2):403–11.CrossRefGoogle Scholar
  36. 36.
    Chen AM, Daly ME, Luu Q, Donald PJ, Farwell DG. Comparison of functional outcomes and quality of life between transoral surgery and definitive chemoradiotherapy for oropharyngeal cancer. Head Neck. 2015;37(3):381–5.CrossRefGoogle Scholar
  37. 37.
    de Almeida JR, Park RC, Villanueva NL, Miles BA, Teng MS, Genden EM. Reconstructive algorithm and classification system for transoral oropharyngeal defects. Head Neck. 2014;36(7):934–41.CrossRefGoogle Scholar
  38. 38.
    Setton J, Lee NY, Riaz N, et al. A multi-institution pooled analysis of gastrostomy tube dependence in patients with oropharyngeal cancer treated with definitive intensity-modulated radiotherapy. Cancer. 2015;121(2):294–301.CrossRefGoogle Scholar
  39. 39.
    Goepfert RP, Lewin JS, Barrow MP, et al. Long-term, prospective performance of the MD Anderson Dysphagia Inventory in “low-intermediate risk” oropharyngeal carcinoma after intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2017;97(4):700–8.CrossRefGoogle Scholar
  40. 40.
    Hutcheson KA, Holsinger FC, Kupferman ME, Lewin JS. Functional outcomes after TORS for oropharyngeal cancer: a systematic review. Eur Arch Otorhinolaryngol. 2015;272(2):463–71.CrossRefGoogle Scholar
  41. 41.
    Genden EM, Kotz T, Tong CC, et al. Transoral robotic resection and reconstruction for head and neck cancer. Laryngoscope. 2011;121(8):1668–74.CrossRefGoogle Scholar
  42. 42.
    More YI, Tsue TT, Girod DA, et al. Functional swallowing outcomes following transoral robotic surgery vs primary chemoradiotherapy in patients with advanced-stage oropharynx and supraglottis cancers. JAMA Otolaryngol Head Neck Surg. 2013;139(1):43–8.CrossRefGoogle Scholar
  43. 43.
    O’Hara J, Goff D, Cocks H, et al. One-year swallowing outcomes following transoral laser microsurgery +/− adjuvant therapy versus primary chemoradiotherapy for advanced stage oropharyngeal squamous cell carcinoma. Clin Otolaryngol. 2016;41(2):169–75.CrossRefGoogle Scholar
  44. 44.
    Sharma A, Patel S, Baik FM, et al. Survival and gastrostomy prevalence in patients with oropharyngeal cancer treated with transoral robotic surgery vs chemoradiotherapy. JAMA Otolaryngol Head Neck Surg. 2016;142(7):691–7.CrossRefGoogle Scholar
  45. 45.
    Zenga J, Suko J, Kallogjeri D, Pipkorn P, Nussenbaum B, Jackson RS. Postoperative hemorrhage and hospital revisit after transoral robotic surgery. Laryngoscope. 2017;127(10):2287–92.CrossRefGoogle Scholar
  46. 46.
    Pollei TR, Hinni ML, Moore EJ, et al. Analysis of postoperative bleeding and risk factors in transoral surgery of the oropharynx. JAMA Otolaryngol Head Neck Surg. 2013;139(11):1212–8.CrossRefGoogle Scholar
  47. 47.
    Kubik M, Mandal R, Albergotti W, Duvvuri U, Ferris RL, Kim S. Effect of transcervical arterial ligation on the severity of postoperative hemorrhage after transoral robotic surgery. Head Neck. 2017;39(8):1510–5.CrossRefGoogle Scholar
  48. 48.
    Asher SA, White HN, Kejner AE, Rosenthal EL, Carroll WR, Magnuson JS. Hemorrhage after transoral robotic-assisted surgery. Otolaryngol Head Neck Surg. 2013;149(1):112–7.CrossRefGoogle Scholar
  49. 49.
    Zenga J, Graboyes EM, Sinha P, Haughey BH. The unplanned intraoperative pharyngotomy: pull, plug, or patch. Laryngoscope. 2015;125(12):2736–40.CrossRefGoogle Scholar
  50. 50.
    Kerawala CJ, Heliotos M. Prevention of complications in neck dissection. Head Neck Oncol. 2009;1:35.CrossRefGoogle Scholar
  51. 51.
    Pollard JM, Gatti RA. Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys. 2009;74(5):1323–31.CrossRefGoogle Scholar
  52. 52.
    De Naeyer B, De Meerleer G, Braems S, Vakaet L, Huys J. Collagen vascular diseases and radiation therapy: a critical review. Int J Radiat Oncol Biol Phys. 1999;44(5):975–80.CrossRefGoogle Scholar
  53. 53.
    Hawkins PG, Kadam AS, Jackson WC, Eisbruch A. Organ-sparing in radiotherapy for head-and-neck cancer: improving quality of life. Semin Radiat Oncol. 2018;28(1):46–52.CrossRefGoogle Scholar
  54. 54.
    De Felice F, Musio D, Tombolini V. Osteoradionecrosis and intensity modulated radiation therapy: an overview. Crit Rev Oncol Hematol. 2016;107:39–43.CrossRefGoogle Scholar
  55. 55.
    Caparrotti F, Huang SH, Lu L, et al. Osteoradionecrosis of the mandible in patients with oropharyngeal carcinoma treated with intensity-modulated radiotherapy. Cancer. 2017;123(19):3691–700.CrossRefGoogle Scholar
  56. 56.
    Hutcheson KA, Yuk M, Hubbard R, et al. Delayed lower cranial neuropathy after oropharyngeal intensity-modulated radiotherapy: a cohort analysis and literature review. Head Neck. 2017;39(8):1516–23.CrossRefGoogle Scholar
  57. 57.
    Rodin D, Caulley L, Burger E, et al. Cost-effectiveness analysis of radiation therapy versus transoral robotic surgery for oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2017;97(4):709–17.CrossRefGoogle Scholar
  58. 58.
    Sher DJ, Fidler MJ, Tishler RB, Stenson K, al-Khudari S. Cost-effectiveness analysis of chemoradiation therapy versus transoral robotic surgery for human papillomavirus-associated, clinical N2 oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2016;94(3):512–22.CrossRefGoogle Scholar
  59. 59.
    de Almeida JR, Moskowitz AJ, Miles BA, et al. Cost-effectiveness of transoral robotic surgery versus (chemo)radiotherapy for early T classification oropharyngeal carcinoma: a cost-utility analysis. Head Neck. 2016;38(4):589–600.CrossRefGoogle Scholar
  60. 60.
    Rudmik L, An W, Livingstone D, et al. Making a case for high-volume robotic surgery centers: a cost-effectiveness analysis of transoral robotic surgery. J Surg Oncol. 2015;112(2):155–63.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Otolaryngology and Communication Sciences, Division of Head and Neck Surgical Oncology and ReconstructionMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of Otolaryngology, Massachusetts Eye and Ear InfirmaryHarvard Medical SchoolBostonUSA

Personalised recommendations