Advertisement

Numerical Study of the RBF-FD Level Set Based Method for Partial Differential Equations on Evolving-in-Time Surfaces

  • Andriy SokolovEmail author
  • Oleg Davydov
  • Stefan Turek
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 129)

Abstract

In this article we present a Radial Basis Function (RBF)-Finite Difference (FD) level set based method for the numerical solution of partial differential equations (PDEs) of the reaction-diffusion-convection type on an evolving-in-time hypersurface Γ(t). In a series of numerical experiments we study the accuracy and robustness of the proposed scheme and demonstrate that the method is applicable to practical models.

References

  1. 1.
    G.A. Barnett, N. Flyer, L.J. Wicker, Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions. J. Comput. Phys. 196(1), 327–347 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    G.A. Barnett, N. Flyer, L.J. Wicker, An RBF-FD polynomial method based on polyharmonic splines for the Navier-Stokes equations: comparisons on different node layouts (2015). arXiv:1509.02615Google Scholar
  3. 3.
    O. Davydov, D.T. Oanh, Adaptive meshless centres and RBF stencils for Poisson equation. J. Comput. Phys. 230, 287–304 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    O. Davydov, D.T. Oanh, On optimal shape parameter for Gaussian RBF-FD approximation of Poisson equation. Comput. Math. Appl. 62, 2143–2161 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    O. Davydov, R. Schaback, Error bounds for kernel-based numerical differentiation. Numer. Math. 132, 243–269 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Dziuk, C.M. Elliott, An Eulerian approach to transport and diffusion on evolving implicit surfaces. Comput. Vis. Sci. 13, 17–28 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Dziuk, C.M. Elliott, A fully discrete evolving surface finite element method. SIAM J. Numer. Anal. 50(5), 2677–269 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Dziuk, C.M. Elliott, Finite element method for surface PDEs. Acta Numer. 50(22), 289–396 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C.M. Elliott, B. Stinner, C. Venkataraman, Modelling cell motility and chemotaxis with evolving surface finite elements. J. R. Soc. Interface 9(76), 3027–3044 (2012)CrossRefGoogle Scholar
  10. 10.
    G.E. Fasshauer, Meshfree approximation methods with Matlab, in Interdisciplinary Mathematical Sciences, vol. 6 (World Scientific Publishers, Singapore, 2007)CrossRefGoogle Scholar
  11. 11.
    N. Flyer, B. Fornberg, V. Bayona, G.A. Barnett, On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Fornberg, E. Larsson, N. Flyer, Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, (2), 869–889 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    E.J. Fuselier, G.B. Wright, A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56(3), 535–565 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228, 2517–2534 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Kuzmin, M. Möller, Algebraic flux correction I. Scalar conservation laws, in Flux-Corrected Transport: Principles, Algorithms and Applications (Springer, Berlin, 2005), pp. 155–206Google Scholar
  16. 16.
    D. Kuzmin, S. Turek, Flux correction tools for finite elements. J. Comput. Phys. 175, 525–558 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    E. Larsson, E. Lehto, A. Heryudono, B. Fornberg, Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    D.T. Oanh, O. Davydov, H.X. Phu, Adaptive RBF-FD method for elliptic problems with point singularities in 2D. Appl. Math. Comput. 313, 474–497 (2017)MathSciNetzbMATHGoogle Scholar
  19. 19.
    M.A. Olshanskii, A. Reusken, J. Grande, A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47(5), 3339–335 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    M.A. Olshanskii, A. Reusken, X. Xu, An Eulerian space-time finite element method for diffusion problems on evolving surfaces. SIAM J. Numer. Anal. 52(3), 1354–1377 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Rätz, A. Voigt, PDE’s on surfaces — a diffuse interface approach. Commun. Math. Sci. 4(3), 575–590 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    V. Shankar, G.B. Wright, R.M. Kirby, A.L. Fogelson, A radial basis function (RBF)-Finite Difference (FD) method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 63(3), 745–768 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Sokolov, R. Ali, S. Turek, An AFC-stabilized implicit finite element method for partial differential equations on evolving-in-time surfaces. J. Comput. Appl. Math. 289, 101–115 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Applied Mathematics, TU DortmundDortmundGermany
  2. 2.Department of MathematicsUniversity of GiessenGiessenGermany

Personalised recommendations