Recent Advances in Minimally Invasive Surgery in Trauma and Elective Surgery

  • Mira Pecheva
  • Humza Tariq Osmani
  • Wasim S. Khan


Accounting for more than a quarter of all surgical interventions, musculoskeletal pathology remains a significant healthcare burden, costing over £4 billion of NHS spending per annum. Accurate, reproducible, and safe surgery, leading to good outcomes, is of paramount importance. Minimally invasive surgery (MIS) is one development which seeks to address the above aim. It has been developed to preserve the anatomy, minimize complications, and optimize recovery using new techniques and instruments, which allow for a smaller area of access to perform traditional surgery. Concerns regarding the limited visual field, steep learning curve, and associated costs of new equipment and implants exist. In this chapter, we sought to assess the current state of MIS, assessing new advances in techniques and procedures for trauma and elective hip, knee, upper limb, foot, and ankle and spinal surgery.


Advances Minimally Invasive Trauma Elective 


  1. 1.
    Ruedi TP, Murphy WM. AO principles of fracture management. Switzerland: AO Foundations; 2007.Google Scholar
  2. 2.
    Young MJ, Barrack R. Complications of internal fixation of tibial plateau fractures. Orthop Rev. 1994;23(2):149–54.PubMedGoogle Scholar
  3. 3.
    Danis R. Theory and practice of osteosynthesis. Paris: Masson & Cie; 1949.Google Scholar
  4. 4.
    Foundation A. AO philosophy and evolution. 2018.Google Scholar
  5. 5.
    Toogood P, Huang A, Siebuhr K, Miclau T. Minimally invasive plate osteosynthesis versus conventional open insertion techniques for osteosynthesis. Injury. 2018;49:S19–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Halle-Smith JM, Carnegy AJ, Carr R, Ahmed A, Wooley R, Wall P. Is there evidence that the percutaneous compression plate method of internal fixation for intertrochanteric hip fractures leads to better intraoperative and postoperative outcomes than the dynamic hip screw? Clinical Medicine Insights: Trauma and Intensive Medicine. 2018;9 Scholar
  7. 7.
    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Foundation A. Proximal femur Fractures. 2010.Google Scholar
  9. 9.
    Knobe M, Gradl G, Buecking B, et al. Locked minimally invasive plating versus fourth generation nailing in the treatment of AO/OTA 31A2. 2 fractures: a biomechanical comparison of PCCP® and Intertan nail®. Injury. 2015;46(8):1475–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Anakwe R, Aitken S, Khan L. Osteoporotic periprosthetic fractures of the femur in elderly patients: outcome after fixation with the LISS plate. Injury. 2008;39(10):1191–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith T, Hedges C, MacNair R, Schankat K, Wimhurst J. The clinical and radiological outcomes of the LISS plate for distal femoral fractures: a systematic review. Injury. 2009;40(10):1049–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Tank JC, Schneider PS, Davis E, et al. Early mechanical failures of the synthes variable angle locking distal femur plate. J Orthop Trauma. 2016;30(1):e7–e11.PubMedCrossRefGoogle Scholar
  13. 13.
    Tidwell JE, Roush EP, Ondeck CL, Kunselman AR, Reid JS, Lewis GS. The biomechanical cost of variable angle locking screws. Injury. 2016;47(8):1624–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Hebert-Davies J, Laflamme G-Y, Rouleau D, et al. A biomechanical study comparing polyaxial locking screw mechanisms. Injury. 2013;44(10):1358–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Cole P, Zlowodzki M, Kregor P. Less invasive stabilization system (LISS) for fractures of the proximal tibia: indications, surgical technique and preliminary results of the UMC Clinical Trial. Injury. 2003;34:A16–29.PubMedCrossRefGoogle Scholar
  16. 16.
    Cole PA, Zlowodzki M, Kregor PJ. Treatment of proximal tibia fractures using the less invasive stabilization system: surgical experience and early clinical results in 77 fractures. J Orthop Trauma. 2004;18(8):528–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Gösling T, Schandelmaier P, Marti A, Hufner T, Partenheimer A, Krettek C. Less invasive stabilization of complex tibial plateau fractures: a biomechanical evaluation of a unilateral locked screw plate and double plating. J Orthop Trauma. 2004;18(8):546–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Neogi DS, Trikha V, Mishra KK, Bandekar SM, Yadav CS. Comparative study of single lateral locked plating versus double plating in type C bicondylar tibial plateau fractures. Ind J Orthop. 2015;49(2):193.CrossRefGoogle Scholar
  19. 19.
    Jiang R, Luo C-F, Wang M-C, Yang T-Y, Zeng B-F. A comparative study of Less Invasive Stabilization System (LISS) fixation and two-incision double plating for the treatment of bicondylar tibial plateau fractures. Knee. 2008;15(2):139–43.PubMedCrossRefGoogle Scholar
  20. 20.
    McNamara IR, Smith TO, Shepperd KL, et al. Surgical fixation methods for tibial plateau fractures. Cochrane Database Syst Rev. 2015;(9)Google Scholar
  21. 21.
    Krupp RJ, Malkani AL, Roberts CS, Seligson D, Crawford CH, Smith L. Treatment of bicondylar tibia plateau fractures using locked plating versus external fixation. Orthopedics. 2009;32(8)CrossRefGoogle Scholar
  22. 22.
    Wang Z, Tang Z, Liu C, Xu Y. Comparison of outcome of ARIF and ORIF in the treatment of tibial plateau fractures. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):578–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen X-Z, Liu C-G, Chen Y, Wang L-Q, Zhu Q-Z, Lin P. Arthroscopy-assisted surgery for tibial plateau fractures. Arthroscopy. 2015;31(1):143–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Y, Wang J, Tang J, Zhou F, Yang L, Wu J. Arthroscopy assisted reduction percutaneous internal fixation versus open reduction internal fixation for low energy tibia plateau fractures. Sci Rep. 2018;8(1):14068.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chan Y-S, Chiu C-H, Lo Y-P, et al. Arthroscopy-assisted surgery for tibial plateau fractures: 2-to 10-year follow-up results. Arthroscopy. 2008;24(7):760–768. e762.PubMedCrossRefGoogle Scholar
  26. 26.
    Chiu C-H, Cheng C-Y, Tsai M-C, et al. Arthroscopy-assisted reduction of posteromedial tibial plateau fractures with buttress plate and cannulated screw construct. Arthroscopy. 2013;29(8):1346–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Buckley R, Tough S, McCormack R. Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures. Orthop Trauma. 2010;8(02):29–36.Google Scholar
  28. 28.
    Harvey EJ, Grujic L, Early JS, Benirschke SK, Sangeorzan BJ. Morbidity associated with ORIF of intra-articular calcaneus fractures using a lateral approach. Foot Ankle Int. 2001;22(11):868–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Burdeaux JB. The medical approach for calcaneal fractures. Clin Orthop Relat Res. 1993;(290):96–107.Google Scholar
  30. 30.
    Burdeaux BD Jr. Fractures of the calcaneus: open reduction and internal fixation from the medial side a 21-year prospective study. Foot Ankle Int. 1997;18(11):685–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Carr JB. Surgical treatment of intra-articular calcaneal fractures: a review of small incision approaches. J Orthop Trauma. 2005;19(2):109–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Majeed H, McBride D. Minimally invasive reduction and percutaneous fixation versus open reduction and internal fixation. Foot Ankle Surg. 2017;23:62.CrossRefGoogle Scholar
  33. 33.
    McMahon SE, Smith TO, Hing CB. A meta-analysis of randomised controlled trials comparing conventional to minimally invasive approaches for repair of an Achilles tendon rupture. Foot Ankle Surg. 2011;17(4):211–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Gardner MJ, Griffith MH, Dines JS, Briggs SM, Weiland AJ, Lorich DG. The extended anterolateral acromial approach allows minimally invasive access to the proximal humerus. Clin Orthop Relat Res. 2005;(434):123–9.Google Scholar
  35. 35.
    Kobayashi M, Watanabe Y, Matsushita T. Early full range of shoulder and elbow motion is possible after minimally invasive plate osteosynthesis for humeral shaft fractures. J Orthop Trauma. 2010;24(4):212–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhiquan A, Bingfang Z, Yeming W, Chi Z, Peiyan H. Minimally invasive plating osteosynthesis (MIPO) of middle and distal third humeral shaft fractures. J Orthop Trauma. 2007;21(9):628–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Liverneaux P, Ichihara S, Facca S, Hidalgo JD. Outcomes of minimally invasive plate osteosynthesis (MIPO) with volar locking plates in distal radius fractures: a review. Hand Surg Rehabil. 2016;35:S80–5.CrossRefGoogle Scholar
  38. 38.
    Skovrlj B, Belton P, Zarzour H, Qureshi SA. Perioperative outcomes in minimally invasive lumbar spine surgery: a systematic review. World J Orthop. 2015;6(11):996.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Karuppiah K, Sinha J. Robotics in trauma and orthopaedics. Annals R Coll Surg Engl. 2018;100(6_sup):8–18.CrossRefGoogle Scholar
  40. 40.
    Palan J, Manktelow A. Surgical approaches for primary total hip replacement. Orthopaed Trauma. 2018;32(1):1–12.CrossRefGoogle Scholar
  41. 41.
  42. 42.
  43. 43.
    (NICE) NIfhaCE. Minimally Invasive Hip Replacement. 20th September 2018.Google Scholar
  44. 44.
    Cheng T, Feng J, Liu T, Zhang X. Minimally invasive total hip arthroplasty: a systematic review. Int Orthop. 2009;33(6):1473.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Migliorini F, Biagini M, Rath B, Meisen N, Tingart M, Eschweiler J. Total hip arthroplasty: minimally invasive surgery or not? Meta-analysis of clinical trials. Int Orthop. 2018:1–10.Google Scholar
  46. 46.
    Levine MJ, West K, Michelson J, Manner P. Retrospective comparison of two-incision total hip arthroplasty with a standard direct lateral approach: a single surgeon’s experience. Paper presented at: Seminars in Arthroplasty 2007.CrossRefGoogle Scholar
  47. 47.
    Lawlor M, Humphreys P, Morrow E, et al. Comparison of early postoperative functional levels following total hip replacement using minimally invasive versus standard incisions. A prospective randomized blinded trial. Clin Rehabil. 2005;19(5):465–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Garellick G, Kärrholm J, Rogmark C, Herberts P. Swedish Hip Arthroplasty Register: Annual Report, 2008. Department of Orthopaedics, Sahlgrenska University Hospital. 2009.Google Scholar
  49. 49.
    Swanson TV. Early results of 1000 consecutive, posterior, single-incision minimally invasive surgery total hip arthroplasties. J Arthroplast. 2005;20:26–32.CrossRefGoogle Scholar
  50. 50.
    Flören M, Lester DK. Durability of implant fixation after less-invasive total hip arthroplasty. J Arthroplast. 2006;21(6):783–90.CrossRefGoogle Scholar
  51. 51.
    Smith TO, Blake V, Hing CB. Minimally invasive versus conventional exposure for total hip arthroplasty: a systematic review and meta-analysis of clinical and radiological outcomes. Int Orthop. 2011;35(2):173–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Noble P, Johnston J, Alexander J, et al. Making minimally invasive THR safe: conclusions from biomechanical simulation and analysis. Int Orthop. 2007;31(1):25–8.PubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sershon RA, Tetreault MW, Della Valle CJ. A prospective randomized trial of mini-incision posterior and 2-incision total hip arthroplasty: minimum 5-year follow-up. J Arthroplast. 2017;32(8):2462–5.CrossRefGoogle Scholar
  54. 54.
    Abdel MP, Chalmers BP, Trousdale RT, Hanssen AD, Pagnano MW. randomized clinical trial of 2-incision vs. mini-posterior total hip arthroplasty: differences persist at 10 years. J Arthroplast. 2017;32(9):2744–7.CrossRefGoogle Scholar
  55. 55.
    Picard F, Deakin A, Balasubramanian N, Gregori A. Minimally invasive total knee replacement: techniques and results. Eur J Orthop Surg Traumatol. 2018;28(5):1–11.CrossRefGoogle Scholar
  56. 56.
    Tasker A, Hassaballa M, Murray J, et al. Minimally invasive total knee arthroplasty; a pragmatic randomised controlled trial reporting outcomes up to 2 year follow up. Knee. 2014;21(1):189–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Hernández-Vaquero D, et al. Cirugía de minima invasion frente acirugía convencional. Unaaproximación desde la evidencia científica. Rev Esp Cir Ortop Traumatol. 2012;56:444–58.PubMedGoogle Scholar
  58. 58.
    Khakha R, Chowdhry M, Norris M, Kheiran A, Patel N, Chauhan S. Five-year follow-up of minimally invasive computer assisted total knee arthroplasty (MICATKA) versus conventional computer assisted total knee arthroplasty (CATKA)—a population matched study. Knee. 2014;21(5):944–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Dalury DF, Dennis DA. Mini-incision total knee arthroplasty can increase risk of component malalignment. Clin Orthop Relat Res. 2005;440:77–81.PubMedCrossRefGoogle Scholar
  60. 60.
    Lin S, Chen C, Fu Y, et al. Comparison of the clinical and radiological outcomes of three minimally invasive techniques for total knee replacement at two years. Bone Joint J. 2013;95(7):906–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Stiglitz Y, Cazeau C. Minimally invasive surgery and percutaneous surgery of the hindfoot and midfoot. Eur J Orthop Surg Traumatol. 2018;28(5):839–47.PubMedCrossRefGoogle Scholar
  62. 62.
    (NICE) NIfHaCE. Surgical correction of hallux valgus using minimal access techniques. February 2010.Google Scholar
  63. 63.
    Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res. 2010;3(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bia A, Guerra-Pinto F, Pereira BS, Corte-Real N, Oliva XM. Percutaneous osteotomies in hallux valgus: a systematic review. J Foot Ankle Surg. 2017;57(1):123–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Rahman M, Summers L, Richter B, Mimran R, Jacob R. Comparison of techniques for decompressive lumbar laminectomy: the minimally invasive versus the “classic” open approach. Minimally Invasive Neurosurg. 2008;51(02):100–5.CrossRefGoogle Scholar
  66. 66.
    Khoo LT, Fessler RG. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 2002;51(suppl_2):S2-146–S142-154.CrossRefGoogle Scholar
  67. 67.
    Deluzio KJ, Lucio JC, Rodgers W. Value and cost in less invasive spinal fusion surgery: lessons from a community hospital. Int J Spine Surg. 2010;4(2):37–40.Google Scholar
  68. 68.
    Seng C, Siddiqui MA, Wong KP, et al. Five-year outcomes of minimally invasive versus open transforaminal lumbar interbody fusion: a matched-pair comparison study. Spine. 2013;38(23):2049–55.PubMedCrossRefGoogle Scholar
  69. 69.
    Lehmann W, Ushmaev A, Ruecker A, et al. Comparison of open versus percutaneous pedicle screw insertion in a sheep model. Eur Spine J. 2008;17(6):857–63.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mira Pecheva
    • 1
  • Humza Tariq Osmani
    • 1
  • Wasim S. Khan
    • 1
  1. 1.Department of Trauma and OrthopaedicsAddenbrooke’s HospitalCambridgeUK

Personalised recommendations