Advertisement

The Interlocking Nailing System and Technique

  • Damien F. Gill
  • Fouzia Khatun
  • Wasim S. Khan
Chapter

Abstract

The advent of the interlocking nail has revolutionized surgical fracture fixation, with minimally invasive techniques that avoid further soft-tissue injury and preserve fracture biology. The continued evolution of designs has led to implants that are able to withstand axial loading, which allows for early mobilization and weight bearing. As the indications for intramedullary nailing have extended beyond the original scope of diaphyseal fractures, techniques have been developed to aid reduction and counter deforming forces. This natural progression of the humble interlocking nail has helped push it to the forefront of trauma management. Understanding of the biomechanical principles that underlie how interlocking nails work is crucial in being able to utilize the technique to the best effect. Here, we discuss the factors that influence how an interlocking nail works, the general principles of nailing techniques in the two most commonly nailed long bones in the body, and the application of an interlocking nail to a notoriously difficult fracture to treat—the proximal tibial fracture.

Keywords

Intramedullary nail Biomechanics Poller screws Malalignment Femur Tibia Fracture 

References

  1. 1.
    Farill J. Orthopedics in Mexico. J Bone Joint Surg Am. 1952;24:506–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Gluck T. Autoplastic transplantation. Implantation von Frem-dkörpern. Berl Klin Wochenschr. 1890;19Google Scholar
  3. 3.
    Nicolaysen J. Lidt on Diagnosen og Behandlungen av. Fr. colli femoris. Nord Med Ark. 1897;8:1.Google Scholar
  4. 4.
    Hey Groves EW. On the application of the principle of extension to comminuted fractures of the long bone, with special reference to gunshot injuries. Br J Surg. 1914;2(7):429–43.CrossRefGoogle Scholar
  5. 5.
    Smith-Petersen MN. Intracapsular fractures of the neck of the femur. Treatment by internal fixation. Arch Surg. 1931;23:715–59.CrossRefGoogle Scholar
  6. 6.
    Küntscher G. Die Marknalung von Knochenbruchen. Lan-genbecks. Arch Klin Chir. 1940;200:443–55.Google Scholar
  7. 7.
    Rehnberg SV. Treatment of fractures and pseudarthroses with marrow nailing. Ann Chir Gynaec Fenn. 1947;36(2)Google Scholar
  8. 8.
    Street DM, Hansen HC, Brewer BJ. The medullary nail. Presentation of a new type and report of 4 cases. Arch Surg. 1947;35:423.CrossRefGoogle Scholar
  9. 9.
    Fischer AW, Maatz R. Weitere Erfahrungen mit der Marknage-lung nach Küntscher. Arch Klin Chir. 1942;203:531.Google Scholar
  10. 10.
    Modny MT, Bambara J. The perforated cruciate intramedullary nail: Preliminary report of its use in geriatric patients. J Am Geriatr Soc. 1953;1:579–88.CrossRefPubMedGoogle Scholar
  11. 11.
    Modny MT, Lewert AH. Transfixion intramedullary nail. Orthop Rev. 1986;15:83–8.PubMedGoogle Scholar
  12. 12.
    Zickel RE. A new fixation device for subtrochanteric fractures of the femur: a preliminary report. Clin Orthop Relat Res. 1967;54:115–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Brumback RJ, Reilly JP, Poka A, et al. Intramedullary nailing of femoral shaft fractures. Part I: decision-making errors with interlocking fixation. J Bone Joint Surg Am. 1988;70:1441–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Brumback RJ, Uwagie-Ero S, Lakatos RP, et al. Intramedullary nailing of femoral shaft fractures. Part II: fracture-healing with static interlocking fixation. J Bone Joint Surg Am. 1988;70:1453–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Brumback RJ, Ellison TS, Poka A, et al. Intramedullary nailing of femoral shaft fractures. Part III: long-term effects of static interlocking fixation. J Bone Joint Surg Am. 1992;74:106–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Ricci WM, O’Boyle M, Borrelli J, Bellabarba C, Sanders R. Fractures of the proximal third of the tibial shaft treated with intramedullary nails and blocking screws. J Orthop Trauma. 2001;15(4):264–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Brumback RJ, Toal TR, Murphy-Zane MS, et al. Immediate weight-bearing after treatment of a comminuted fracture of the femoral shaft with a statically locked intramedullary nail. J Bone Joint Surg Am. 1999;81:1538–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Russell TA, Taylor JC, LaVelle DG, Beals NB, Brumfield DL, Durham AG. Mechanical characterization of femoral interlocking intramedullary nailing systems. J Orthop Trauma. 1991;5(3):332–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Beals N, Durham G, Lynch G. Mechanical characterization of interlocking intramedullary nails. Memphis, Tennessee: Richards Research Report, Smith and Nephew Richards Inc.; 1988.Google Scholar
  20. 20.
    Miles AW, Eveleigh RJ, Wight BJ, Goodwin MI. An investigation into the load transfer in interlocking intramedullary nails during simulated healing of a femoral fracture. Z Mech E Engineering in Medicine. 1994;208(1):19–26.Google Scholar
  21. 21.
    Erduran M, Karakasli A, Ertem F, Taylan O, Yildiz DV, Celik S, Havitcioglu H. Biomechanical effects of the distance from the fracture zone to the interlocking fixation screw of intramedullary nail. J Biochem. 2001;44:4.  https://doi.org/10.1016/j.jbiomech.2011.02.027.CrossRefGoogle Scholar
  22. 22.
    Aresti N, Culpan P, Bates P. Biomechanics of fracture fixation. In: Ramachandran M, editor. Basic orthopaedic sciences. 2nd ed. Florida: CRC Press; 2017. p. 451–75.Google Scholar
  23. 23.
    Hak DJ, Mauffrey C. Trauma. In: Miller MD, Thompson SR, editors. Miller’s review of orthopaedics. 7th ed. Philadelphia: Elsevier; 2016. p. 767–855.Google Scholar
  24. 24.
    Krettek C, Miclau T, Schandelmaier P, Stephan C, Mohlmann U, Tscherne H. The mechanical effect of blocking screws (“Poller screws”) in stabilizing tibia fractures with short proximal or distal fragments after insertion of small-diameter intramedullary nails. J Orthop Trauma. 1999;13:550–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Haas N, Krettek C, Schandelrnaier P, Frigg R, Tschernc H. A new solid unreamed tibia1 nail for shaft fractures with severe soft tissue injury. Injury. 1993;24(1):49–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Reichert IL, McCarthy ID, Hughes SP. The acute vascular response to intramedullary reaming. Microsphere estimation of blood flow in the intact ovine tibia. J Bone Joint Surg Br. 1995;77(3):490–3.CrossRefPubMedGoogle Scholar
  27. 27.
    Elliott DS, Newman KJ, Forward DP, Hahn DM, Ollivere B, Kojima K, Handley R, Rossiter ND, Wixted JJ, Smith RM, Moran CG. A unified theory of bone healing and nonunion: BHN theory. Bone Joint J. 2016;98-B(7):884–91.CrossRefPubMedGoogle Scholar
  28. 28.
    Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg. 2002;84-B:1093–110.CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Vallier HA, Wang X, Moore TA, Wilber JH, Como JJ. Timing of orthopaedic surgery in multiple trauma patients: development of a protocol for early appropriate care. J Orthop Trauma. 2013;27(10):543–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Lasanianos NG, Kanakaris NK, Dimitriou R, Pape HC, Giannoudis PV. Second hit phenomenon: existing evidence of clinical implications. Injury. 2011;42(7):617–29.CrossRefPubMedGoogle Scholar
  32. 32.
    Jones MD, Carpenter C, Mitchell SR, Whitehouse M, Mehendale S. Retrograde femoral nailing of periprosthetic fractures around total knee replacements. Injury. 2016;47(2):460–4.  https://doi.org/10.1016/j.injury.2015.10.030.CrossRefPubMedGoogle Scholar
  33. 33.
    Granville-Chapman J, Nawaz SZ, Trompeter A, Newman KJ, Elliott DS. Freehand ‘figure 4’ technique for tibial intramedullary nailing: Introduction of technique and review of 87 cases. Eur J Orthop Surg Traumatol. 2014;24(7):1311–5.  https://doi.org/10.1007/s00590-013-1306-y.CrossRefPubMedGoogle Scholar
  34. 34.
  35. 35.
    Toivanen JA, Vaisto O, Kannus P, Latvala K, Honkonen SE, Jarvinen MJ. Anterior knee pain after intramedullary nailing of fractures of the tibial shaft, a prospective, randomised study comparing two different nail-insertion techniques. J Bone Joint Surg Am. 2002;84A(4):580–5.CrossRefPubMedGoogle Scholar
  36. 36.
    McConnell T, Tornetta P 3rd, Tilzey J, Casey D. Tibial portal placement: the radiographic correlate of the anatomic safe zone. J Orthop Trauma. 2001;15(3):207–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Bhandari M, Tornetta P 3rd, Sprague S, Najibi S, Petrisor B, Griffith L, Guyatt GH. Predictors of reoperation following operative management of fractures of the tibial shaft. J Orthop Trauma. 2003;17(5):353–61.Google Scholar
  38. 38.
    Audigé L, Griffin D, Bhandari M, Kellam J, Rüedi TP. Path analysis of factors for delayed healing and non-union in 416 operatively treated tibial shaft fractures. Clin Orthop Relat Res. 2005;438:221–32.Google Scholar
  39. 39.
    Hannah A, Aboelmegd T, Yip G, Hull P. A novel technique for accurate Poller (blocking) screw placement. Injury. 2014;45(6):1011–4. https://doi.org/10.1016/j.injury.2014.02.029.CrossRefPubMedGoogle Scholar
  40. 40.
    Bhandari M, Guyatt G, Tornetta P, Schemitsch EH, Swiontkowski M, Sanders D, Walter SD. Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures—the study to prospectively evaluate reamed intramedullary nails in patients with tibial fractures (SPRINT). J Bone Joint Surg Am. 2008;90(12):2567–78. https://doi.org/10.2106/JBJS.G.01694.CrossRefPubMedGoogle Scholar
  41. 41.
    Finkemeier CG, Schmidt AH, Kyle RF, Templeman DC, Varecka TF. A prospective, randomized study of intramedullary nails inserted with and without reaming for the treatment of open and closed fractures of the tibial shaft. J Orthop Trauma. 2000;14(3):187–93.CrossRefPubMedGoogle Scholar
  42. 42.
    Giannoudis PV, Snowden S, Matthews SJ, Smye SW, Smith RM. Friction burns within the tibia during reaming. Are they affected by the use of tourniquet? J Bone Joint Surg Br. 2002;84(4):492–6.CrossRefGoogle Scholar
  43. 43.
    Pollak AN, Battistella F, Pettey J, Olson SA, Chapman MW. Reamed femoral nailing in patients with multiple injuries. Adverse effects of tourniquet use. Clin Orthop Relat Res. 1997;339:41–6.CrossRefGoogle Scholar
  44. 44.
    Kwok CS, Crossman PT, Loizou CL. Plate versus nail for distal tibial fractures: a systematic review and meta-analysis. J Orthop Trauma. 2014;28(9):542–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Vallier HA, Cureton BA, Patterson BM. Randomized, prospective comparison of plate versus intramedullary nail fixation for distal tibia shaft fractures. J Orthop Trauma. 2011;25(12):736–41.CrossRefPubMedGoogle Scholar
  46. 46.
    Lindvall E, Sanders R, Dipasquale T, Herscovici D, Haidukewych G, Sagi C. Intramedullary nailing versus percutaneous locked plating of extra-articular proximal tibial fractures: comparison of 56 cases. J Orthop Trauma. 2009;23(7):485–92. https://doi.org/10.1097/BOT.0b013e3181b013d2.CrossRefPubMedGoogle Scholar
  47. 47.
    Tornetta P 3rd, Collins E. Semiextended position of intramedullary nailing of the proximal tibia. Clin Orthop Relat Res. 1996;328:185–9.CrossRefGoogle Scholar
  48. 48.
    Avilucea FR, Triantafillou K, Whiting PS, Perez EA, Mir HR. Suprapatellar intramedullary nail technique lowers rate of malalignment of distal tibia fractures. J Orthop Trauma. 2016;30(10):557–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Damien F. Gill
    • 1
    • 2
  • Fouzia Khatun
    • 1
    • 2
  • Wasim S. Khan
    • 1
    • 2
  1. 1.Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation TrustCambridgeUK
  2. 2.ORCA (Orthopaedic Research Collaborative East Anglia)CambridgeUK

Personalised recommendations