Advertisement

Bipolar and Junction Field-Effect Transistors

  • Badih El-Kareh
  • Lou N. Hutter
Chapter

Abstract

Bipolar junction transistors (BJT) are inherent to CMOS technologies. Understanding the basic principles of operation of a BJT and its characteristics is not only important to efficiently use the component in bipolar and BiCMOS applications. It is also important to understand bipolar effects in CMOS, such as the subthreshold behavior, snapback, and latch-up, and to identify process and design techniques to modify their impact on circuit performance. Similarly, a discussion of integrated junction field-effect transistors (JFET) is important to its use in analog designs, mainly as a very low-noise, high input impedance device. It is also important to understand its parasitic effect, referred to as “the JFET effect” in high-voltage, high-power devices. The chapter begins with a review of BJT types, operation, and characteristics that are relevant to analog applications. This is followed by a description of JFET types, basic operation, and characteristics. The chapter concludes with simple circuit applications of both transistors.

Supplementary material

References

  1. 1.
    A.B. Phillips, Transistor Engineering (McGraw-Hill, 1962)Google Scholar
  2. 2.
    B. El-Kareh, Fundamentals of Semiconductor Processing Technologies (Kluwer Academic Publishers, 1995)Google Scholar
  3. 3.
    P.J. Coppen, W.T. Matzen, Distribution of recombination current in emitter-base junctions of silicon transistors. IEEE Trans. Electron Dev. ED-9(1), 75–81 (1962)CrossRefGoogle Scholar
  4. 4.
    C.T. Sah, Effect of surface recombination and channel on p-n junction and transistor characteristics. IEEE Trans. Electron Dev. ED-9(1), 94–108 (1962)Google Scholar
  5. 5.
    C.T. Sah, R.N. Noyce, W. Shockley, Carrier generation and recombination in p-n junctions and p-n junction characteristics. IRE Trans. Electron Dev. 45(9), 1228–1238 (1957)Google Scholar
  6. 6.
    G.D. Mahan, Energy gap in Si and Ge: Impurity dependence. J. Appl. Phys. 51(5), 2634–2646 (1980)CrossRefGoogle Scholar
  7. 7.
    T.N. Morgan, Broadening of impurity bands in heavily doped silicon. Phys. Rev. 139, 343–348 (1965)CrossRefGoogle Scholar
  8. 8.
    R.J. Van Overstraeten, H.J. DeMan, R.P. Mertens, Transport equation in heavily doped silicon. IEEE Trans. Electron Dev. ED-20(3), 290–298 (1973)CrossRefGoogle Scholar
  9. 9.
    H.P.D. Lanyon, R.A. Tuft, Bandgap narrowing in moderately to heavily doped silicon. IEEE Trans. Electron Dev. ED-26(7), 1014–1018 (1979)CrossRefGoogle Scholar
  10. 10.
    J.W. Slotboom, H.C. DeGraaff, Bandgap narrowing in silicon bipolar transistors. IEEE Trans. Elecron Dev. ED-24(8), 1123–1125 (1977)CrossRefGoogle Scholar
  11. 11.
    J. del Alamo, S. Swirhun, R.M. Swanson, Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon. IEEE IEDM Tech. Digest, 290–293 (1985)Google Scholar
  12. 12.
    E.J. McGrath, D.H. Navon, Factors limiting current gain in power transistors. IEEE Trans. Electron Dev. ED-24(10), 1255–1259 (1977)CrossRefGoogle Scholar
  13. 13.
    B. El-Kareh, Chap. 3, in Silicon Devices and Process Integration, (Springer, 2009), p. 167Google Scholar
  14. 14.
    A. Hastings, The Art of Analog Layout (Pearson Prentice Hall, 2006), pp. 312–313Google Scholar
  15. 15.
    W.M. Webster, On the variation of junction transistor current amplification factor with emitter current. Proc. IRE 42(6), 914–920 (1954)CrossRefGoogle Scholar
  16. 16.
    C.T. Kirk Jr., A theory of transistor cut-off frequency fall-off at high current densities. IEEE Trans Electron Dev. ED-9(2), 164–174 (1962)CrossRefGoogle Scholar
  17. 17.
    S.K. Ghandhi, The Theory and Practice of Microelectronics (John Wiley and Sons, 1968)Google Scholar
  18. 18.
    Y.S. Yuan, Base current reversal in bipolar transistors and circuits: A review and update. IEE Proc.-Circuits Syst. 141(4), 299–306 (1994)CrossRefGoogle Scholar
  19. 19.
    J.M. Early, Effects of space-charge layer widening in junction transistors. Proc. IRE 40, 1401–1406 (1952)CrossRefGoogle Scholar
  20. 20.
    H.K. Gummel, A charge control relation for bipolar transistors. Bell Syst. Tech. J. 49, 115–120 (1970)CrossRefGoogle Scholar
  21. 21.
    E.J. Prinz, J.C. Sturm, Analytical modeling of current gain – Early voltage products in Si/Si1-xGex/Si heterojunction bipolar transistors. IEEE IEDM Tech. Digest, 853–856 (1991)Google Scholar
  22. 22.
    L.J. Giacoletto, Study of p-n-p alloy junction transistor from d-c through medium frequencies. RCA Rev. 15(4), 506–562 (1954)Google Scholar
  23. 23.
    E.O. Johnson, Physical limitations on frequency and power parameters of transistors. RCA Rev., 163–177 (1975)Google Scholar
  24. 24.
    J. D. Cressler and G. Niu, Silicon-Germanium Heterojunction Bipolar Transistors., Artech House, 2003Google Scholar
  25. 25.
    T.H. Ning, D.D. Tang, Bipolar trends. Proc. IEEE 74(12), 1669–1677 (1986)CrossRefGoogle Scholar
  26. 26.
    I. Getreu, Modeling the Bipolar Transistor (Tektronix Inc, 1976), p. 144Google Scholar
  27. 27.
    D.K. Schroder, Semiconductor Material Device Characterization (John Wiley and Sons, 1998), p. 218Google Scholar
  28. 28.
    R.J. Baker, CMOS, Design, Layout, and Simulation, J (Wiley & Sons, Inc., 2010)Google Scholar
  29. 29.
    P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (John Wiley & Sons, 2001)Google Scholar
  30. 30.
    D.F. Hilbiber, A new semiconductor voltage standard. IEEE ISSCC, Digest Tech. Papers, 32–33 (1964)Google Scholar
  31. 31.
    R.J. Widlar, New developments in IC voltage regulators. IEEE ISSCC, Digest Tech. Paper, 158–159 (1970)Google Scholar
  32. 32.
    A.P. Brokaw, A simple three-terminal IC bandgap reference. IEEE J. Solid State Circuits SC-9(6), 388–393 (1974)CrossRefGoogle Scholar
  33. 33.
    C.R. Palmer, R.C. Dobkin, A Curvature Corrected Voltage Reference (ISSCC, 1981), pp. 58–59Google Scholar
  34. 34.
    G.C.M. Meijer, P.C. Schmale, K. van Zalinge, A new curvature corrected bandgap reference. IEEE JSSC SC-17(6), 1139–1143 (1982)Google Scholar
  35. 35.
    B.-S. Song, P.R. Gray, A precision curvature-compensated CMOS bandgap reference. IEEE JSSC SC-18(6), 634–643 (1983)Google Scholar
  36. 36.
    V.V. Ivanov, K.E. Sanborn, I.M. Filanovsky, Bandgap Voltage References with 1 V Supply (ESSCIRC, 2006), pp. 311–314Google Scholar
  37. 37.
    M.A.P. Pertijs, G.C.M. Meijer, J.H. Huijsing, Precision temperature measurement using CMOS substrate PNP transistors. IEEE Sensors J. 4(3), 294–300 m 2004CrossRefGoogle Scholar
  38. 38.
    V.A. Vashchenko, D.J. LaFonteese, K.G. Korablev, Lateral PNP BJT ESD protection devices. IEEE BCTM, 53–56 (2008)Google Scholar
  39. 39.
    W. Shockley, A unipolar ‘field-effect’ transistor. Proc. IRE 40(11), 1367–1376 (1952)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Badih El-Kareh
    • 1
  • Lou N. Hutter
    • 2
  1. 1.PIYECedar ParkUSA
  2. 2.Lou Hutter ConsultingDallasUSA

Personalised recommendations