Advertisement

Rectifying and Ohmic Contacts

  • Badih El-Kareh
  • Lou N. Hutter
Chapter

Abstract

A contact between metal and silicon can be rectifying or ohmic. The most commonly used rectifying contact is the Schottky barrier diode (SBD). Because of its fast response to signals, the SBD has found several applications in analog circuits where switching speed is important. A contact is said to be ohmic, i.e., non-rectifying, if it exhibits negligible resistance to current in both voltage polarities. Most semiconductor devices are interconnected on the chip and brought to the “outside world” by means of ohmic contacts and metal wires. Understanding the physical nature of contacts and methods to reduce their resistance is becoming increasingly important as contact dimensions are reduced. The first part of this chapter discusses SBD properties, characterization, and applications. The second part describes the formation and characterization of ohmic contacts.

Supplementary material

References

  1. 1.
    W. Schottky, “Halbleitertheorie der Sperrschicht,” Naturwissenschaften, 26, 843, 1938; Z. Phys. 113, 367–414, 1939; 118, 539–592, 1942zbMATHGoogle Scholar
  2. 2.
    F. Braun, Ueber die Stromleitung durch Schwefelmetalle. Ann. Phys. J. C. Poggendorff. Phys. Chem. 153, 556–563 (1874)Google Scholar
  3. 3.
    F. Braun, Ueber Abweichungen vom Ohm’schen Gesetz in metallisch leitenden Koerpern. Ann. Phys. G. Wiedemann 1, 95–110 (1877)Google Scholar
  4. 4.
    C. A. Mead, Physics of interfaces, on Ohmic Contacts to Semiconductors, B. Schwartz, Ed. New York, Electrochem. Soc., 1969Google Scholar
  5. 5.
    H.K. Henisch, Rectifying Semiconductor Contacts (Clarendon Press, Oxford, 1957)zbMATHGoogle Scholar
  6. 6.
    V.L. Rideout, A review of the theory, technology and applications of metal–semiconductor rectifiers. Thin Solid Films 48(3), 261–291 (1978)MathSciNetGoogle Scholar
  7. 7.
    M.M. Atalla, Metal-semiconductor Schottky barriers, devices and applications, in Proc. Munich Symp. On Microelectronics, (October 1966), pp. 123–157Google Scholar
  8. 8.
    CRC Handbook of Physics and Chemistry, 12124, 2012Google Scholar
  9. 9.
    J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71(10), 717–727 (1947)MathSciNetGoogle Scholar
  10. 10.
    W. Shockley, On the surface states associated with a periodic potential. Phys. Rev. 56(4), 317–323 (1939)zbMATHGoogle Scholar
  11. 11.
    W.H. Brattain, W. Shockley, Density of surface states on silicon deduced from contact potential measurements. Phys. Rev. 72, 345 (1947)Google Scholar
  12. 12.
    A.M. Cowley, S.M. Sze, Surface sates and barrier height of metal-semiconductor systems. J. Appl. Phys. 36(10), 3212–3220 (1965)Google Scholar
  13. 13.
    K.E. Moselund, J.E. Freiermuth, P. Dainesi, A.M. Ionescu, Experimental study of the process dependence of Mo, Cr, Ti, and W silicon Schottky diodes and contact resistance. IEEE Trans. Electron Dev. 53(4), 712–718 (2006)Google Scholar
  14. 14.
    J. Robertson, L. Lin, Fermi level pinning in Si, Ge and GaAs systems – MIGS or defects? IEEE IEDM Tech. Digest, 119–122 (2009)Google Scholar
  15. 15.
    C.R. Crowell, The Richardson constant for thermionic emission in Schottky barrier diodes. Solid State Electron. 8(4), 395–399 (1965)Google Scholar
  16. 16.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  17. 17.
    E.H. Rhoderick, The physics of Schottky barriers, in Third Solid-State Device Conf., Pp. 1153–1168, Exeter, (1969)Google Scholar
  18. 18.
    A.J. Dekker, Solid State Physics (Prentice-Hall, 1965)Google Scholar
  19. 19.
    V.L. Rideout, C.R. Crowell, Effects of image force and tunneling on current transport in metal-semiconductor (Schottky barrier) contacts. Solid State Electron. 13(7), 993–1009 (1970)Google Scholar
  20. 20.
    D.L. Scharfetter, Minority carrier injection and charge storage in epitaxial Schottky barrier diodes. Solid State Electron. 8(3), 299–211 (1965)Google Scholar
  21. 21.
    C.D. Lien, E.C.T. So, M.A. Nicolet, An improved forward I-V method for non-ideal Schottky diodes with high series resistance. IEEE Trans. Electron Dev. ED-31(10), 1502–1503 (1984)Google Scholar
  22. 22.
    H. Norde, A modified I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50(7), 5052–5053 (1979)Google Scholar
  23. 23.
    D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, 1998)Google Scholar
  24. 24.
    C.A. Mead, Metal-semiconductor surface barriers. Solid State Electron. 9(11), 1023–1033 (1966)Google Scholar
  25. 25.
    A.Y.C. Yu, Characteristics of aluminum-silicon Schottky barrier diodes. IEEE IEDM Tech. Digest, 140–140 (1969)Google Scholar
  26. 26.
    H. Card, Aluminum-silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Trans. Electron Dev. ED-23(6), 538–544 (1976)Google Scholar
  27. 27.
    D. Dascalu, G. Brezeaunu, P.A. Dan, C. Dima, Modeling electrical behavior of nonuniform Al-Si Schottky diodes. Solid State Electron. 24(10), 897–904 (1981)Google Scholar
  28. 28.
    D. Kahng, Conduction properties of the au-n-type-Si Schottky barrier. Solid State Electron. 6(3), 281–295 (1963)Google Scholar
  29. 29.
    S.S. Li, J.S. Kim, K.L. Wang, Enhancement of effective barrier height in Ti-silicon Schottky diode using low-energy ion implantation. IEEE Trans. Electron Dev. ED-27(7), 1310–1312 (1980)Google Scholar
  30. 30.
    A.M. Cowley, Titanium-silicon Schottky barrier diodes. Solid State Electron. 13(4), 403–414 (1970)Google Scholar
  31. 31.
    C.R. Crowell, J.C. Sarace, S.M. Sze, Tungsten-semiconductor Schottky barrier diodes. Trans. Metall. Soc. AIME 233, 478–481 (1965)Google Scholar
  32. 32.
    P.E. Schmid, P.S. Ho, T.Y. Tan, Summary abstract: Correlation between Schottky barrier height and phase stoichiometry/structure of silicide–silicon interfaces. J. Vac. Sci. Technol. 20(3), 688–689 (1982)Google Scholar
  33. 33.
    R.J. Purtell, G. Hollinger, G.W. Rubloff, P.S. Ho, Schottky barrier formation. J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films 1(2), 566–569 (1983)Google Scholar
  34. 34.
    C. Mallardeau, Y. Morand, E. Abonneau, Characterization of TiSi2 ohmic and Schottky contacts formed by rapid thermal annealing technology. J. Electrochem. Soc. 136(1), 238–241 (1989)Google Scholar
  35. 35.
    E. Barbarini, S. Ferrero, C.F. Pirri, Electrical characterization of self-aligned titanium silicide SBDs formed by furnace annealing. IEEE EDSSC, 1–4 (2010)Google Scholar
  36. 36.
    N. J. Woods and S. Hall, “Self-Aligned Cobalt Disilicide/Silicon Schottky Barrier Diodes,” ESSDERC, 517–520, 1995Google Scholar
  37. 37.
    S. Zhu, R.L. Meirhaeghe, C. Detavernier, F. Cardon, G.P. Ru, X.P. Qu, B.Z. Li, Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111). Solid State Electron. 44(1), 663–671 (2000)Google Scholar
  38. 38.
    S. Sankaran, K. O, Schottky barrier diodes for millimeter wave detection in a foundry CMOS process. IEEE Electron Dev. Lett. 26(7), 492–494 (2005)Google Scholar
  39. 39.
    E. Alptekin, M.C. Ozturk, V. Misra, Tuning of the platinum silicide Schottky barrier height on n-type silicon by sulfur segregation. IEEE Electron Dev. Lett. 38(4), 331–333 (2009)Google Scholar
  40. 40.
    S.M. Woodruff, N.S. Dellas, B.Z. Liu, S.M. Eichfeld, T.S. Mayer, J.M. Redwing, S.E. Mohney, Nickel and nickel silicide Schottky barrier contacts to n-type silicon nanowires. J. Vac. Sci. Technol. B: Micorelectronics and Nanometer Structures 26(4), 1592–1596 (2008)Google Scholar
  41. 41.
    E. Alptekin, M.C. Ozturk, Tuning of the nickel silicide Schottky barrier height on p-type silicon by indium implantation. IEEE Electron Dev. Lett. 30(12), 1372–1374 (2009)Google Scholar
  42. 42.
    M. Morschbach, A. Mueller, C. Schoellhorn, M. Oehme, T. Buck, E. Kasper, Integrated silicon Schottky mixer diodes with cutoff frequencies above 1 THz. IEEE Trans. Microwave Theory and Techniques 55, 2005(6), 2013–2018Google Scholar
  43. 43.
    K. Shenai, Effect of arsenic implantation on electrical characteristics of LPCVD WSi2/n-Si Schottky contacts. IEEE Trans. Electron Dev. 38(9), 2033–2035 (1991)Google Scholar
  44. 44.
    Y. Yamamoto, H. Miyanaga, T. Amazawa, T. Sakai, A MoSi2 Schottky diode for bipolar LSI’s. IEEE Trans. Electron Dev. ED-32(7), 1231–1239Google Scholar
  45. 45.
    R. Aldrich, Low storage Schottky-barrier diode transistor. IEEE IEDM Tech. Digest, 241–241 (1968)Google Scholar
  46. 46.
    J.E. Price, A high-speed integrated Schottky diode transistor logic circuit. IRDM Tech. Digest, 241–242 (1968)Google Scholar
  47. 47.
    E.R. Chenette, R.A. Petersen, R. Edwards, J.J. Kleimack, Integrated Schottky-diode clamp for transistor storage time control. Proc. IEEE 56(2), 232–233 (1968)Google Scholar
  48. 48.
    F.J. Huang, K.K. O, Schottky-clamped NMOS transistors implemented in a conventional 0.8-μm CMOS process. IEEE Electron Dev. Lett. 19(9), 326–328 (1998)Google Scholar
  49. 49.
    Alan Holden, consultant, private communication June, 2013Google Scholar
  50. 50.
    M.P. Lepselter, S.M. Sze, SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain. Proceeding of the IEEE 58(8), 1400–1402 (1968)Google Scholar
  51. 51.
    F.J. Huang, K.K. O, Metal-oxide semiconductor field-effect transistors using Schottky barrier drains. Electronics Lett. 33(15), 1341–1342 (1997)Google Scholar
  52. 52.
    A. Balijepalli, J. Ervin, P. Joshi, J. Yang, C. Yyu, T.J. Thornton, High-voltage CMOS compatible SOI MESFET characterization and spice model extraction, in Microwave Symp. Digest, (2006), pp. 1335–1338Google Scholar
  53. 53.
    A.Y.C. Yu, Electron tunneling and contact resistance of metal-silicon contact barriers. Solid State Electron. 13(2), 239–247 (1970)Google Scholar
  54. 54.
    F.A. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid State Electron. 9(7), 695–707 (1966)Google Scholar
  55. 55.
    D.K. Schroeder, D.L. Meier, Solar cell contact resistance – A review. IEEE Trans. Electron Dev. ED-31(5), 637–647 (1984)Google Scholar
  56. 56.
    D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 1998) Chapter 3 and references thereinGoogle Scholar
  57. 57.
    D.P. Kennedy, P.C. Murley, A two-dimensional mathematical analysis of the diffused semiconductor resistor. IBM J. Res. Develop. 12, 242–250 (1968)zbMATHGoogle Scholar
  58. 58.
    H. Murrmann, D. Widmann, Current crowding on metal contacts to planar devices. IEEE Trans. Electron Dev., ED 16, 1022–1024 (1969)Google Scholar
  59. 59.
    H.H. Berger, Models for contacts to planar devices. Solid State Electron. 15(2), 145–158 (1972)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Badih El-Kareh
    • 1
  • Lou N. Hutter
    • 2
  1. 1.PIYECedar ParkUSA
  2. 2.Lou Hutter ConsultingDallasUSA

Personalised recommendations