Review of Single-Crystal Silicon Properties

  • Badih El-Kareh
  • Lou N. Hutter


A review of single-crystal silicon properties is essential to understanding silicon components. The objective of this chapter is to highlight only those semiconductor properties that are most important to analog (and digital) silicon device operation and characteristics discussed in the following chapters. The chapter covers carrier concentrations and thermal-equilibrium statistics, carrier transport under low- and high-field conditions, and minority-carrier lifetime and diffusion length.


  1. 1.
    C. Kittel, Introduction to Solid-State Physics (Wiley, New York, 1968)zbMATHGoogle Scholar
  2. 2.
    W. Shockley, Electrons and Holes in Semiconductors (D. Van Nostrand Company, 1950)Google Scholar
  3. 3.
    R.B. Adler, A.C. Smith, R.L. Longini, Semiconductor electronics education committee, in Introduction to Semiconductor Physics, vol. 1, (Wiley, 1964)Google Scholar
  4. 4.
    W. Finkelburg, Einfuehrung in die Atomphysik (Springer, 1958)Google Scholar
  5. 5.
    J.L. Moll, Physics of Semiconductors (McGraw-Hill, 1964)Google Scholar
  6. 6.
    A.J. Dekker, Solid State Physics (Prentice-Hall, 1965)Google Scholar
  7. 7.
    F.J. Morin, J.P. Maita, Electrical properties of silicon containing arsenic and boron. Phys. Rev. 96(1), 28–35 (1954)CrossRefGoogle Scholar
  8. 8.
    E.M. Conwell, Properties of silicon and germanium. Part II, Proc. IRE 46(6), 1281–1300 (1958)CrossRefGoogle Scholar
  9. 9.
    B. El-Kareh, Fundamentals of Semiconductor Processing Technologies (Kluwer Academic Press, 1995)Google Scholar
  10. 10.
    G.W. Ludwig, R.L. Watters, Drift and conductivity mobility in silicon. Phys. Rev. 101(6), 1699–1701 (1956)CrossRefGoogle Scholar
  11. 11.
    E.M. Conwell, V.F. Weisskopf, Theory of impurity scattering in semiconductors. Phys. Rev. 77(3), 388–390 (1950)CrossRefGoogle Scholar
  12. 12.
    B. El-Kareh, Silicon Devices and Process Integration, Deep Submicron and Nano-Scale Technologies (Springer, 2009)Google Scholar
  13. 13.
    D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)CrossRefGoogle Scholar
  14. 14.
    G. Baccarani, P. Ostoja, Electron mobility empirically related to phosphorus concentration in silicon. Solid State Electron. 18(6), 579–580 (1975)CrossRefGoogle Scholar
  15. 15.
    D.A. Antoniadis, A.G. Gonzalez, R.W. Dutton, Boron in near intrinsic <100> and <111> silicon under inert and oxidizing ambients – Diffusion and segregation. J. Electrochem. Soc.: Solid-State Science and Technology 125(5), 813–819 (1978)CrossRefGoogle Scholar
  16. 16.
    S. Wagner, Diffusion of boron from shallow ion implants in silicon. J. Electrochem. Soc.: Solid-State Science and Technology 119(1), 1570–1576 (1972)CrossRefGoogle Scholar
  17. 17.
    N.D. Arora, J.R. Hauser, D.J. Roulston, Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Dev. ED-29(2), 292–295 (1982)CrossRefGoogle Scholar
  18. 18.
    W.W. Gartner, Temperature dependence of junction transistor parameters. Proc. IRE 45(5), 662–680 (1957)CrossRefGoogle Scholar
  19. 19.
    J.C. Irvin, Resistivity of bulk silicon and of diffused layers in silicon. Bell Syst. Tech. J. 41, 387–410 (1962)CrossRefGoogle Scholar
  20. 20.
    W.R. Thurber, R.L. Mattis, Y.M. Liu, J.J. Filliban, Resistivity-dopant density relationship for phosphorus-doped silicon. J. Electrochem. Soc.: Solid-State Science and Technology 12(8), 1980 (1807)Google Scholar
  21. 21.
    W. Shockley, W.T. Read, Statistics of the recombination of holes and electrons. Phys. Rev. 87(5), 835–842 (1952)CrossRefGoogle Scholar
  22. 22.
    R.N. Hall, Electron-hole recombination in germanium. Phys. Rev. 87(2), 387 (1952)CrossRefGoogle Scholar
  23. 23.
    A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, 1967)Google Scholar
  24. 24.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, 1981)Google Scholar
  25. 25.
    J. Dziewior, W. Schmid, Auger recombination coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31(5), 346–348 (1977)CrossRefGoogle Scholar
  26. 26.
    G. Augustine, A. Rohatgi, N.M. Jokerst, Base doping optimization for radiation-hard Si, GaAs, and InP solar cells. IEEE Trans. Electron Dev. 39(10), 2395–2400 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Badih El-Kareh
    • 1
  • Lou N. Hutter
    • 2
  1. 1.PIYECedar ParkUSA
  2. 2.Lou Hutter ConsultingDallasUSA

Personalised recommendations