Advertisement

Chip Reliability

  • Badih El-Kareh
  • Lou N. Hutter
Chapter

Abstract

This chapter focuses on component reliability. It begins with an overview of basic reliability concepts and models with emphasis on their applications to reliability engineering. An overview of important failure mechanisms of components and methods to reduce their impact on chip reliability is then presented. The sections include dielectric reliability, electro and stress migration, hot-carrier reliability, latch-up, bias-temperature instabilities, Joule heating and resistor reliability, high-voltage and high-power MOSFET reliability, plasma damage, and electrostatic discharge.

Supplementary material

References

  1. 1.
    N.R. Mann, R.E. Schafer, N.D. Singpurwalla, Methods for Statistical Analysis of Reliability and Life Data (Wiley, New York, 1974)zbMATHGoogle Scholar
  2. 2.
    P.D.T. O’Connor, Practical Reliability Engineering (Wiley, 1991)Google Scholar
  3. 3.
    A.G. Sabnis, VLSI reliability, in VLSI Electronics Microstructure Science, ed. by N. G. Einspruch, vol. 22, (Academic Press, 1981). J. F. Lawless, Statistical Models and Methods for Lifetime Data, John Wiley & Sons, 1982Google Scholar
  4. 4.
    W.C. Riordan, R. Miller, J.M. Sherman, J. Hicks, Microprocessor reliability performance as a function of die location for a (0.25 μm) five layer metal CMOS logic process. Proc. IRPS, 1–11 (1996)Google Scholar
  5. 5.
    C.G. Shirley, A defect model of reliability. Tutorial, IRPS (1995)Google Scholar
  6. 6.
    F. Kuper, J. van der Pol, E. Ooms, T. Johnson, R. Wijburg, W. Koster, D. Johnson, Relation between yield and reliability of integrated circuits: Experimental results and application to continuous early failure rate reduction programs. Proc. IRPS, 17–21 (1996)Google Scholar
  7. 7.
    J. van der Pol, F. Kuper, E. Ooms, Relation between yield and reliability of integrated circuits: Experimental results and application to failure rate assessment and reduction in the one digit FIT and PPM reliability era. Microelectron. Reliab. 36(11/12), 1603–1610 (1996)Google Scholar
  8. 8.
    R.E. Walpole, R.H. Myers, Probability and Statistics for Engineers and Scientists (McMillan Publishing Company, Pacific Grove, CA, 1985)Google Scholar
  9. 9.
    R.L. Scheaffer, J.T. McClave, Probability and Statistics for Engineers (Duxbury Press, 1986)Google Scholar
  10. 10.
    W.Q. Meeker, L. Escobar, Statistical Methods for Reliability Data (Wiley, New York, NY, 1998)Google Scholar
  11. 11.
    W. Navidi, Statistics for Engineers and Scientists (McGraw Hill, New York, NY, 2008)Google Scholar
  12. 12.
    B. Mitchell, Operating-extremes test improves reliability. EDN, 1–9 (2000)Google Scholar
  13. 13.
    A.B. Glaser, G.E. Subak-Sharpe, Integrated Circuit Engineering (Addison-Wesley Publishing Company, 1979), p. 765Google Scholar
  14. 14.
    A. Bénard, E.C. Bos-Levenbach, The plotting of observations on probability paper. Statistica Neerlandica 7, 163–173 (1953). (Translated by R. Schop, DAF Trucks N.V., Dec. 28, 2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J.W. McPherson, Reliability Physics and Engineering (Springer, New York, NY, 2010)Google Scholar
  16. 16.
    R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. A 119, 173–181 (1928)zbMATHCrossRefGoogle Scholar
  17. 17.
    M. Depas, B. Vermeire, P.W. Mertens, R.L. van Meirhaeghe, M.M. Heyns, Determination of tunneling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures. Solid State Electron. 38(8), 1465–1471 (1995)CrossRefGoogle Scholar
  18. 18.
    M. Lenzlinger, E.H. Snow, Fowler-Nordheim tunneling into thermally grown SiO2. J. Appl. Phys. 40, 278–283 (1969)CrossRefGoogle Scholar
  19. 19.
    D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, NY, 1998), p. 393, 394Google Scholar
  20. 20.
    M. Kimura, H. Koyama, Stress-induced low-level leakage mechanism in ultrathin silicon dioxide films caused by neutral oxide trap generation. IEEE IRPS Tech. Digest, 167172 (1994)Google Scholar
  21. 21.
    T.N. Nguyen, P. Olivo, A new failure mode of very thin (< 50 A) thermal SiO2 films. IEEE IRPS Tech. Digest, 66–71 (1987)Google Scholar
  22. 22.
    K. Naruk, S. Taguchi, M. Wada, Stress induced leakage current limiting to scale down EEPROM tunnel oxide thickness. IEEE IEDM Tech. Digest, 424–427 (1988)Google Scholar
  23. 23.
    R. Moazzami, C. Hu, Stress-induced current in thin silicon dioxide films. IEEE IEDM Tech. Digest, 139–142 (1992)Google Scholar
  24. 24.
    K. Okada, H. Kubo, A. Ishinaga, K. Yoneda, A concept for gate oxide lifetime limited by “B-mode” stress induced leakage currents in direct tunneling regime. Synposium VLSI Tech. Digest, 57–58 (1999)Google Scholar
  25. 25.
    E. Wu, J. Suñé, B. Linder, J. Stathis, W. Lei, Critical assessment of soft breakdown stability time and the implementation of new post breakdown methodology for ultra-thin gate oxides. IEEE IEDM Tech. Digest, 919–922 (2003)Google Scholar
  26. 26.
    S.I. Takagi, N. Yasuda, A. Toriumi, Experimental evidence of inelastic tunneling in stress-induced leakage current. IEEE Trans. Electron Dev. 46(2), 335–341 (1999)CrossRefGoogle Scholar
  27. 27.
    T. Endoh, A quantitative analysis of stress-induced leakage currents in ultra-thin silicon dioxide films. IEEE ICSICT, 958963 (2001)Google Scholar
  28. 28.
    T. Inatsuka, R. Kuroda, A. Teramoto, Y. Kumagai, S. Sugawa, T. Ohmi, Demonstrating distribution of SILC values at individual leakage spots. IEEE IRPS Tech. Digest, GD.5.1–GD.5.6 (2013)Google Scholar
  29. 29.
    R. Thewes, R. Brederlow, C. Schlünder, P. Wieczorek, A. Hesener, B. Ankele, P. Klein, S. Kessel, W. Weber, Device reliability in analog CMOS applications. IEEE IEDM Tech. Digest, 81–84 (1999)Google Scholar
  30. 30.
    R. Hijab, Product reliability and maximum voltage limits from extrinsic gate oxide voltage ramp data. International Reliability Workshop (IRW), 98–100 (1999)Google Scholar
  31. 31.
    A. Aal, A comparison between V-ramp TDDB techniques for reliability evaluations. IEEE IIRW, 133–136 (2008)Google Scholar
  32. 32.
    D.J. Dumin, R.S. Scott, R. Subramoniam, A model relating wearout induced physical changes in thin oxides to the statistical description of breakdown. IEEE IRPS Tech. Digest, 285–292 (1993)Google Scholar
  33. 33.
    R. Degraeve, G. Groeseneken, R. Bellens, J.L. Ogier, M. Depas, P. Roussel, H. Maes, New insight in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE Trans. Electron Dev. 45(4), 904–911 (1998)CrossRefGoogle Scholar
  34. 34.
    J.H. Stathis, Percolation models for gate oxide breakdown. J. Appl. Phys. 86(10), 5757–5766 (1999)CrossRefGoogle Scholar
  35. 35.
    S. Lombardo, J.H. Stathis, B.P. Linder, K.L. Pey, F. Palumbo, C.H. Tung, Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98, 121301 (2005)CrossRefGoogle Scholar
  36. 36.
    R. Degraeve, F. Schulaer, B. Kaczer, M. Lorenzini, D. Wellekins, P. Heindricks, M. van Duuren, G.J.M. Dormans, J. Van Houdt, L. Haspeslagh, G. Groesenecken, G. Tempel, Analytical percolation model for predicting anomalous charge loss in flash memories. IEEE Trans. Electron Dev. 51(9), 1302–1399 (2004)CrossRefGoogle Scholar
  37. 37.
    J.W. McPherson, H.C. Mogul, Underlying physics of the thermochemical E-model in describing low-field time-dependent dielectric breakdown in SiO2 thin films. J. Appl. Phys. 84(3), 1513–1523 (1998)CrossRefGoogle Scholar
  38. 38.
    J.W. McPherson, D.A. Baglee, Acceleration factors for thin gate oxide stressing. Proc. IRPS, 1–5 (1985)Google Scholar
  39. 39.
    R. Moazzami, J.C. Lee, C. Hu, Temperature acceleration of time-dependent dielectric breakdown. IEEE Trans. Electron Dev. 36(11), 2462–2465 (1989)CrossRefGoogle Scholar
  40. 40.
    J.C. Lee, I.C. Chen, C. Hu, Modeling and characterization of gate oxide reliability. IEEE Trans. Electron Dev. 35(12), 2268–2278 (1988)CrossRefGoogle Scholar
  41. 41.
    I.C. Chen, S. Holland, K.K. Young, C. Chang, C. Hu, Substrate hole current and oxide breakdown. Appl. Phys. Lett. 49(11), 669–671 (1986)CrossRefGoogle Scholar
  42. 42.
    R. Moonen, P. Vanmeerbeek, G. Lekens, W. DeCeuninck, P. Moens, J. Bousten, Study of time-dependent dielectric breakdown on gate oxide capacitors at high temperature. IEEE Proc. IFPA, 288–291 (2007)Google Scholar
  43. 43.
    J. Ahn, W. Ting, D.L. Kwong, High-quality MOSFETs with ultrathin LPCVD gate SiO2. IEEE Electron Dev. Lett. 13(4), 186–188 (1992)CrossRefGoogle Scholar
  44. 44.
    A. Kar-Roy, C. Hu, M. Racanelli, C.A. Compton, P. Kempf, G. Jolly, P.N. Sherman, J. Zhang, A. Yin, High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits. IEEE IITC, 245–247 (1999)Google Scholar
  45. 45.
    J.A. Babcock, S.G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, B. El-Kareh, Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics. IEEE Electron Dev. Lett. 22(5), 230–232 (2001)CrossRefGoogle Scholar
  46. 46.
    S. Van Huylenbroek, S. Decoutere, R. Venegas, S. Jenei, G. Windericks, Investigation of PECVD dielectrics for nondispersive metal-insulator-metal capacitors. IEEE Electron Dev. Lett. 23(4), 191–193 (2002)CrossRefGoogle Scholar
  47. 47.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn.., Section 7.3.4 (Wiley, 1982)Google Scholar
  48. 48.
    P. Hesto, Chap. 5: The nature of electronic conduction in thin insulating layers, in Instabilities in Silicon Devices, ed. by G. Barbottin, A. Vapaille, vol. 1, (North Holland), p. a986Google Scholar
  49. 49.
    J. Scarpulla, D.C. Eng, S.R. Olson, C.S. Wu, A TDDB model of Si3N4-based capacitors in GaAs MMIC. IEEE IRPS, 128–137 (1999)Google Scholar
  50. 50.
    L. Vandelli, A. Padovani, L. Larcher, G. Bersuker, Microscopic modeling of electrical stress-induced breakdown in poly-crystalline hafnium oxide dielectrics. IEEE Trans. Electron Dev. 60(5), 1754–1762 (2013)CrossRefGoogle Scholar
  51. 51.
    J. Kim, E.T. Ogawa, J.W. McPherson, A statistical evaluation of the field acceleration parameter observed during time dependent breakdown testing of silica-based low-k interconnect dielectrics. IEEE IRPS Tech. Digest, 478–483 (2006)Google Scholar
  52. 52.
    F. Chen, F. Ungar, A.H. Fisher, J. Gill, A. Chinthakindi, T. Goebel, M. Shinoski, D. Coolbaugh, V. Ramachanran, Y.K. Siew, E. Kaltalioglu, S.O. Kim, K. Park, Reliability characterization of BEOL vertical natural capacitor using copper and low-k SiCOH dielectric for 65 nm RF and mixed-signal applications. IEEE IRPS Tech. Digest, 490–495 (2006)Google Scholar
  53. 53.
    A.H. Fischer, Y.K. Lim, P. Riess, T. Pompl, B.C. Zhang, E.C. Chua, W.W. Keller, J.B. Tan, V. Klee, Y.C. Tan, D. Souche, D.K. Sohn, A. von Glasow, TDDB robustness of highly dense 65 nm BEOLvertical natural capacitor with competitive area capacitance for RF and mixed-signal applications. IEEE IRPS Tech. Digest, 126–131 (2008)Google Scholar
  54. 54.
    J. Noguchi, T. Saito, N. Ohashi, H. Ashihara, H. Maruyama, M. Kubo, H. Yamaguchi, D. Ryuzaki, K.I. Takeda, K. Hinode, Impact of low-K dielectrics and barrier metals on TDDB lifetime of Cu interconnects. IEEE IRPS Tech. Digest, 355–359 (2001)Google Scholar
  55. 55.
    O. Aubel, M. Kiene, W. Yao, New approach of 90 nm low-K interconnect evaluation using a voltage ramp dielectric breakdown (VRDB) test. IEEE IRPS Tech. Digest, 483–489 (2005)Google Scholar
  56. 56.
    F. Chen, O. Bravo, K. Chanda, P. McLaughlin, T. Sullivan, J. Gill, L. Lloyd, R. Contra, J. Aitkin, A comprehensive study of low-k SiCOH TDDB phenomena and its reliability lifetime development. IEEE IRPS Tech. Digest, 46–53 (2006)Google Scholar
  57. 57.
    F. Chen, P. McLaughlin, J. Gambino, E. Wu, J. Demarest, D. Meatyard, M. Shinosky, The effect of metal area and line spacing on TDDB characteristics of 45 nm low-k SiCOH dielectrics. IEEE IRPS Tech. Digest, 382–389 (2007)Google Scholar
  58. 58.
    M. Lin, J.W. Liang, K.C. Su, New voltage ramp dielectric breakdown methodology based on square root E model for Cu/low-k interconnect reliability. IEEE IRPS Tech. Digest, 5A.3.1–5A.3.6 (2010)Google Scholar
  59. 59.
    M. Lin, K. Su, Correlation between TDDB and VRDB for low-k dielectrics with square root model. IEEE Electron Dev. Lett. 31(5), 494–496 (2010)CrossRefGoogle Scholar
  60. 60.
    F. Chen, M. Shinoski, Addressing Cu/low-k dielectric TDDB-reliability challenges for advanced CMOS technologies. IEEE Trans. Electron Dev. 56(1), 2–12 (2009)CrossRefGoogle Scholar
  61. 61.
    S. Palit, X. Xu, A. Raman, M.A. Alam, Implications of rough dielectric surfaces on charging-adjusted actuation of RF-MEMS. IEEE Electron Dev. Lett 35(9), 948–951 (2014)CrossRefGoogle Scholar
  62. 62.
    C.H. Ng, K.W. Chew, J.X. Li, T.T. Tjou, L.N. Goh, S.F. Chu, Characterization and comparison of two metal-insulator-metal capacitor schemes in 0.13 μm copper dual damascene metallization process for mixed-mode and RF applications. IEEE IEDM, 241–243 (2002)Google Scholar
  63. 63.
    J.R. Black, Mass transport of aluminum by momentum exchange with conducting electrons, in IEEE 6th Annual Symposium on Reliability Physics, (1967), pp. 148–159. Reprinted in IRPS, 1–6, 2005CrossRefGoogle Scholar
  64. 64.
    T.S. Sullivan, Stress-induced voiding in microelectronic metallization: Void growth models and refinements. Ann. Rev. Mater. Sci. 26, 333–364 (1996)CrossRefGoogle Scholar
  65. 65.
    I.A. Blech, E.S. Meieran, Electromigration in thin Al films. J. Appl. Phys. 40(2), 485–491 (1969)CrossRefGoogle Scholar
  66. 66.
    J.R. Black, Electromigration – A brief survey of some recent results. IEEE Trans. Electron Dev. ED-16(4), 338–348 (1969)CrossRefGoogle Scholar
  67. 67.
    H.V. Schreiber, Activation energies for the different electromigration mechanisms in aluminum. Solid State Electron. 24(6), 583–589 (1981)CrossRefGoogle Scholar
  68. 68.
    I. Ames, F.H. d’Heurle, R.E. Horstmann, Reduction of electromigration in aluminum films by copper doping. IBM J. Res. Dev. 14(4), 461–463 (1970)CrossRefGoogle Scholar
  69. 69.
    S.S. Iyer, C.Y. Ting, Electromigration study of Al-Cu/Ti/Al-Cu systems. IEEE IRPS Tech. Digest, 272–278 (1984)Google Scholar
  70. 70.
    M.C. Shine, F.M. d’Heurle, Activation energy for electromigration in aluminum films alloyed with copper. IBM J. Res. Dev. 15, 378–383 (1971)CrossRefGoogle Scholar
  71. 71.
    S. Vaidya, D. B. Fraser, and K. Sinha, “Electromigration resistance of fine line Al,” IEEE Proc. 18th Rel, Phys., Symp, 165–170, 1980Google Scholar
  72. 72.
    K. Wu, P. Jupiter, W. Baerg, Microstructural effects on the electromigration of aluminum interconnects. IEEE VMIC, 504 (1989)Google Scholar
  73. 73.
    C.K. Hu, L. Gignac, B. Baker, E. Liniger, R. Yu, P. Flaitz, Impact of Cu microstructure on electromigration reliability. IEEE IITC, 93–95 (2007)Google Scholar
  74. 74.
    R.E. Jones Jr., L.D. Smith, A new wafer-level iso-thermal Joule heated electromigration test for rapid testing of integrated- circuit interconnects. J. Appl. Phys. 61(9), 4670–4678 (1987)CrossRefGoogle Scholar
  75. 75.
    T.C. Lee, M. Ruprecht, D. Tibel, T.D. Sullivan, S. Wen, Electromigration study of Al and Cu metallization using WLR isothermal method. IEEE IRPS, 327–335 (2002)Google Scholar
  76. 76.
    J.S. Suehle, H.A. Schaft, Current density dependence of electromigration t50 enhancement due to pulsed operation. IEEE IRPS, 106–110 (1990)Google Scholar
  77. 77.
    J.J. Estabil, H.S. Rathore, E.N. Levine, Electromigration improvements with titanium underlay and overlay in Al(Cu) metallurgy. IEEE VMIC, 242–247 (1991)Google Scholar
  78. 78.
    H.S. Rathore, R.G. Filippi, R.A. Wachnick, J.J. Estabil, T. Kwok, Electromigration and current-carrying implications for aluminum-based metallurgy with tungsten stud-via interconnections. SPIE 1805 Submicron Metallization, 251, 1992–262Google Scholar
  79. 79.
    H.H. Hoang, R.A. Coy, J.W. McPherson, Barrier metal effects on electromigration of layered aluminum metallization. VMIC, 133–141 (1990)Google Scholar
  80. 80.
    J.C. Ondrusek, A. Nishimura, H.H. Hoang, T. Sigiura, R. Blumenthal, H. Kitagawa, J.W. McPherson, Effective kinetic variation with stress duration for multilayered metallization. IEEE IRPS, 199–184 (1988)Google Scholar
  81. 81.
    T.C. Lee, M. Ruprecht, D. Tibel, T.D. Sullivan, S. Wen, Electromigration study of Al and Cu metallization using WLR isothermal methods. IEEE IRPS Tech. Digest, 327–335 (2002)Google Scholar
  82. 82.
    T. Kwok, C. Tan, D. Moy, J.J. Estabil, H.S. Rathore, S. Basaviaah, Electromigration in two-level interconnection with W. studs. IEEE VMIC Tech. Digest, 106–112 (1990)Google Scholar
  83. 83.
    T. Tao, K.K. Young, N.W. Cheung, C. Hu, Comparison of electromigration reliability of tungsten and aluminum vias under DC and time-varying current stressing. IEEE IRPS Tech. Digest, 338–343 (1992)Google Scholar
  84. 84.
    A.S. Oates, Electromigration failure of contacts and vias in sub-micron integrated circuit metallizations. Microelecron. Reliab. 36(7/8), 925–953 (1996)CrossRefGoogle Scholar
  85. 85.
    T. Kauerauf, G. Butera, K. Croes, S. Demuynck, C.J. Wilson, P. Roussel, C. Drijbooms, H. Bender, M. Lofrano, B. Vandevelde, Z. Tőkei, G. Groeseneken, Degradation and failure analysis of copper and tungsten contacts under high fluence stress. IEEE IRPS, 712–716 (2010)Google Scholar
  86. 86.
    I.A. Blech, Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 47(4), 1203–1208 (1976)CrossRefGoogle Scholar
  87. 87.
    R.G. Filippi, M.A. Gribelyuk, T. Joseph, T. Kane, T.D. Sullivan, L.A. Clavenger, G. Costrini, J. Gambino, R.C. Iggulden, E.W. Kiewra, X.J. Ning, R. Ravikumar, R.F. Schnabel, G. Stojakovich, S.J. Weber, C.K. Hu, D.L. Rath, K.P. Rodbell, Electromigration in AlCu lines: Comparison of dual damascene and metal reactive ion etching. Thin Solid Films 388(1–2), 303–314 (2001)CrossRefGoogle Scholar
  88. 88.
    J.R. Lloyd, P.M. Smith, The effect of passivation on electromigration lifetime of AlCu thin film conductors. J. Vac. Sci. Tech. A 1(2), 455–458 (1983)CrossRefGoogle Scholar
  89. 89.
    D.S. Gardner, P.A. Flinn, Mechanical stress as a function of temperature in aluminum films. IEEE Trans. Electron Dev. 35(12), 2160–2169 (1988)CrossRefGoogle Scholar
  90. 90.
    C.K. Hu, K.P. Rodbell, T.D. Sullivan, K.Y. Lee, D.P. Bouldin, Electromigration and stress-induced voiding in fine Al and Al-alloy thin-film lines. IBM J. Res. Dev. 39(4), 465–497 (1995)CrossRefGoogle Scholar
  91. 91.
    M.A. Korkonen, C.A. Paszkiet, C.Y. Li, Mechanism of thermal stress relaxation and stress-induced voiding in narrow aluminum-based metallization. J. Appl. Phys. 69(12), 808308091 (1991)Google Scholar
  92. 92.
    R.J. Gleixner, W.D. Nix, A physically based model of electromigration and stress- induced void formation in microelectronic interconnects. J. Appl. Phys. 86(4), 1932–1944 (1999)CrossRefGoogle Scholar
  93. 93.
    Y. Nishi, J.W. McPherson, Impact of new materials, changes in physics and continued ULSI scaling on failure mechanisms and analysis. IEEE Keynote address at IPFA Singapore, 1–8 (1999)Google Scholar
  94. 94.
    D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rothore, T. Schulz, L. Su, S. Luse, J. Slattery, Full copper wiring in a sub-0.25-μm CMOS ULSI technology. IEEE IEDM Tech. Digest, 773–776 (1997)Google Scholar
  95. 95.
    T. Ohmic, T. Hoshi, T. Yoshie, T. Takewski, M. Otsuki, T. Shibata, T. Nitta, Large electromigration resistance coper interconnect technology for sub-half-micron ULSi’s. IEEE IEDM Tech. Digest, 285–288 (1991)Google Scholar
  96. 96.
    S.P. Hau-Riege, Probabilistic immortality of Cu damascene interconnects. J. Appl. Phys. 91(4), 2014–2022 (2002)CrossRefGoogle Scholar
  97. 97.
    C.K Hu, R. Rosenberg, W. Klaasen, and A. K. Stamper, “Electromigration reliability study of submicron Cu interconnects,” Proc. Advanced Metallization Conf, 691–697, 1999Google Scholar
  98. 98.
    M.H. Lin, Y.L. Lin, J.M. Chen, M.S. Yeh, K.P. Chang, K.C. Su, T. Wang, Electromigration lifetime improvement of copper interconnect by cap/dielectric interface treatment and geometrical design. IEEE Trans. Electron Dev. 52(12), 2602–2608 (2005)CrossRefGoogle Scholar
  99. 99.
    M. Tada, M. Abe, N. Furutake, F. Ito, T. Tonegawa, M. Sekine, Y. Hayahi, Improving reliability of copper dual-damascene interconnects by impurity doping and interface strengthening. IEEE Trans. Electron Dev. 54(8), 1867, 2007–1877CrossRefGoogle Scholar
  100. 100.
    C.L. Gan, C.V. Thompson, K.L. Pey, W.K. Choi, H.L. Tay, B. Yu, M.K. Radhakrishnan, Effect of current direction on the lifetime of different levels of Cu dual-damascene metallization. Appl. Phys. Lett. 79(27), 4592–4594 (2001)CrossRefGoogle Scholar
  101. 101.
    T. Sullivan, D. Pierce, Discussion group summary, interconnect reliability-with a focus on copper. IRW, 90–91 (1998)Google Scholar
  102. 102.
    T. Saito, H. Ashihara, K. Ishikawa, M. Miyauchi, Y. Yamada, H. Nakano, A reliability study of barrier-metal-clad copper interconnects with self-aligned metal caps. IEEE Trans. Electron Dev. 51(12), 2129–2135 (2004)CrossRefGoogle Scholar
  103. 103.
    L. Zhao, C. Capasso, A. Marathe, S. Thrasher, R. Hernandez, P. Mulski, S. Rose, T. Nguyen, M. Gall, A. Kawasaki, Dependence of EM performance on line-width for Cu dual inlaid structures. Proc. SPIE 4229, 13–19 (2000)CrossRefGoogle Scholar
  104. 104.
    D. Ney, X. Federspiel, V. Girault, O. Thomas, P. Gergaud, Stress-induced electromigration backflow effect in copper interconnects. IEEE TDMR 6(2), 175–180 (2006)Google Scholar
  105. 105.
    A.S. Thrasher, C. Capasso, L. Zhao, R. Hernandez, P. Mulski, S. Rose, T. Nguyen, H. Kawasaki, Blech effect in single-inlaid Cu interconnects. IEEE IITC, 177–179 (2001)Google Scholar
  106. 106.
    B.S. Yokogawa, H. Tkizawa, Electromigration induced incubation, drift, and threshold in single damascene copper interconnects. IEEE IITC, 127–129 (2002)Google Scholar
  107. 107.
    P.C. Wang, R.G. Filippi, Electromigration threshold in copper interconnects. Appl. Phys. Lett. 78(23), 3598–3600 (2001)CrossRefGoogle Scholar
  108. 108.
    D.L. Arnaud, Electromigration threshold length effect in dual damascene copper-oxide interconnects. IEEE IRPS, 433–434 (2002)Google Scholar
  109. 109.
    T. Wang, C. Huang, P.C. Chou, S.S. Chung, T.E. Chang, Effects of hot carrier induced interface state generation in submicron LDD MOSFET’s. IEEE Trans. Electron Dev. 41(9), 1618–1622 (1994)CrossRefGoogle Scholar
  110. 110.
    F. Ootsuka, The evaluation of the activation energy of interface state generation by hot-electron injection. IEEE Trans. Electron Dev. 38(6), 1477–1488 (1991)CrossRefGoogle Scholar
  111. 111.
    B. El-Kareh, Silicon Devices and Process Integration, Deep Submicron and Nano-Scale Technologies (Springer, New York, NY, Chap. 3, 2009)Google Scholar
  112. 112.
    B.A. McDonald, Avalanche degradation of hFE. IEEE Trans. Electron Dev. ED-17(10), 871–878 (1970)CrossRefGoogle Scholar
  113. 113.
    D.D.L. Tang, E. Hackbarth, Junction degradation in bipolar transistors and the reliability imposed constraints to scaling and design. IEEE Trans. Electron Dev. 35(12), 2101–2107 (1988)CrossRefGoogle Scholar
  114. 114.
    S.Y. Huang, K.M. Chen, G.W. Huang, V. Liang, H.C. Tseng, T.L. Hsu, C.Y. Chang, Hot-carrier induced degradation of RF power characteristics of SiGe heterojunction bipolar transistors. IEEE Trans. Dev. Mat. Reliability (TDMR) 5(2), 183–189 (2005)CrossRefGoogle Scholar
  115. 115.
    S.R. Sheng, W.R. McKinnon, S.P. McAlister, C. Storey, J.S. Hamel, P. Ashburn, Hot-carrier stressing of NPN polysilicon emitter bipolar transistors incorporating fluorine. IEEE Trans. Electron Dev. 50(4), 1141–1144 (2003)CrossRefGoogle Scholar
  116. 116.
    P. Cheng, A. Appaswamy, M. Bellini, J.D. Cressler, Probing hot carrier phenomena in npn and pnp SiGe HBTs. SiRF, 54–57 (2008)Google Scholar
  117. 117.
    T.H. Ning, C.M. Osburn, H.N. Yu, Emission probability of hot electrons from silicon into silicon dioxide. J. Appl. Phys. 48(1), 286–293 (1977)CrossRefGoogle Scholar
  118. 118.
    H. Gesh, J.P. Leburton, G.E. Dorda, Generation of interface states by hot hole injection in MOSFETs. IEEE Trans. Electron Dev. 29(5), 913–918 (1982)CrossRefGoogle Scholar
  119. 119.
    E. Takeda, A. Shimizu, T. Hagiwara, Role of hot-hole injection in hot-carrier effects and the small degraded channel region in MOSFETs. Electron Dev. Lett. 4(9), 329–331 (1983)CrossRefGoogle Scholar
  120. 120.
    C. Hu, S.C. Tam, F.C. Hsu, P.K. Ko, T.Y. Chan, K.Y. Terryl, Hot-electron-induced MOSFET degradation – Model, monitor, and improvement. IEEE Trans. Electron Dev. 32(2), 375–385 (1985)CrossRefGoogle Scholar
  121. 121.
    E. Takeda, N. Suzuki, An empirical model for device degradation due to hot-carrier injection. IEEE Electron Dev. Lett. 4(4), 111–113 (1983)CrossRefGoogle Scholar
  122. 122.
    J.E. Chung, M.C. Chen, J.E. Moon, P.K. Ko, C. Hu, Low-voltage hot-electron currents and degradation in deep-submicrometer MOSFETs. IEEE Trans. Electron Dev. 37(7), 1651–1657 (1990)CrossRefGoogle Scholar
  123. 123.
    A. Abramo, C. Fiegna, asnd F. Venturi, “Hot carrier effects in short MOSFETs at low applied voltage,” IEEE IEDM Tech. Digest, 301–304, 1995Google Scholar
  124. 124.
    S.E. Rauch, F.J. Guarin, G. LaRosa, Impact of E-E scattering to the hot carrier degradation of deep submicron NMOSFETs. IEEE Electron Dev. Lett. 19(12), 463–465 (1998)CrossRefGoogle Scholar
  125. 125.
    D.S. Ang, T.W.H. Phua, H. Liao, C.H. Ling, High-energy tail electrons as the mechanism for the worst-case hot-carrier stress degradation of the deep submicrometer N-MOSFET. IEEE Electron Dev. Lett. 24(7), 469–471 (2003)CrossRefGoogle Scholar
  126. 126.
    E. Li, E. Rosenbaum, J. Tao, P. Fang, Projecting lifetime of deep submicron MOSFETs. IEEE Trans. Electron Dev. 48(4), 471–478 (2001)Google Scholar
  127. 127.
    P. Heremans, R. Bellens, G. Groeseneken, H.E. Maes, Consistent model for the hot-carrier degradation in n-channel and p-channel MOSFETs. IEEE Trasn. Electron Dev. 33(12), 2194–2309 (1988)CrossRefGoogle Scholar
  128. 128.
    R. Thewes, M. Brox, G. Tempel, W. Weber, K. Goser, Channel-length-independent hot-carrier degradation in analog p-MOS operation. IEEE Electron Dev. Lett. 13(11), 590–592 (2001)CrossRefGoogle Scholar
  129. 129.
    R. Thewes, M. Brox, K.F. Goser, W. Weber, Hot-carrier degradation of p-MOSFET’s under analog operation. IEEE Trans. Electron Dec. 44(4), 607–617 (1997)CrossRefGoogle Scholar
  130. 130.
    R. Brederlow, W. Weber, D. Schmitt-Landsiedel, R. Thewes, Hot-carrier degradation of the low-frequency noise in MOS transistors under analog and RF operating conditions. IEEE Trans. Electron Dev. 49(9), 1588–1596 (2002)CrossRefGoogle Scholar
  131. 131.
    Y. Chen, J. Zhou, S. Tedja, F. Hui, A.S. Oates, Stress-induced MOSFET mismatch for analog circuits. IEEE IIRW, 41–43 (2001)Google Scholar
  132. 132.
    J.C. Lin, S.Y. Chen, H.W. Chen, H.C. Lin, A.W. Jhou, S. Chou, J. Ko, T.F. Lei, H.S. Haung, Matching variation after HCI stress in advanced CMOS technology for analog applications. IEEE IIRW, 1–3 (2005)Google Scholar
  133. 133.
    L.L. Lewyn, T. Ytterdal, C. Wulff, K. Martin, Analog circuit design in nanoscale technologies. Proc. IEEE 97(10), 2009 (1687-1714)Google Scholar
  134. 134.
    W. Weber, C. Werner, G. Dorda, Degradation of n-MOS-transistors after pulsed stress. IEEE Electron Dev. Lett. 8(12), 518–520 (1984)CrossRefGoogle Scholar
  135. 135.
    K.L. Chen, S. Saller, R. Shah, The case of AC stress in the hot-carrier effect. IEEE Trans. Electron Dev. 33(3), 42–426 (1986)Google Scholar
  136. 136.
    T.C. Ong, K. Seki, P.K. Ko, C. Hu, Hot-carrier-induced degradation in p-MOSFETs und AC stress. IEEE Electron Dev. Lett. 9(5), 211–213 (1988)CrossRefGoogle Scholar
  137. 137.
    C. Bergonzoni, G.D. Libera, R. Benecchi, A. Nannini, Dynamic hot carrier degradation effects in CMOS submicron transistors. Microelectron. Reliab. 33(11), 1515–1519 (1992)CrossRefGoogle Scholar
  138. 138.
    N. Shimoyama, T. Tsuchiya, Enhanced hot-carrier-degradation in LDD MOSFETs under pulsed stress. IEEE Trans. Electron Dev. 42(9), 1600–1604 (1995)CrossRefGoogle Scholar
  139. 139.
    R. Radojcic, Hot electron aging in p-channel MOSFETs for VLSI CMOS. IEEE Trans. Electron Dev. 31(12), 1896–1898 (1984)CrossRefGoogle Scholar
  140. 140.
    E. Sangiorgi, B. Ricco, P. Olivo, Hot electron and holes in MOSFETs biased below the Si-SiO2 interface barrier. IEEE Electron Dev. Lett. 6(10), 513–515 (1985)CrossRefGoogle Scholar
  141. 141.
    B. El-Kareh, W. Abadeer, W. Tonti, Design of submicron PMOSFETs for DRAM array applications. IEEE IEDM Tech. Digest, 379–384 (1991)Google Scholar
  142. 142.
    S. Ogura, P.J. Tsang, W.W. Walker, D.L. Critchlow, J.F. Shepard, Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor. IEEE Trans. Electron Dev. 27(8), 1359–1367 (1980)CrossRefGoogle Scholar
  143. 143.
    A. Bryant, B. El-Kareh, T. Furukawa, W.P. Noble, E.J. Nowak, W. Schwittek, W. Tonti, A fundamental limit of optimized 3.3 V sub quarter micron fully overlapped LDD MOSFETs. IEEE Trans. Electron Dev. 39(5), 1208–1215 (1992)CrossRefGoogle Scholar
  144. 144.
    T. Hori, T. Yasui, S. Akamatsu, Hot-carrier effects in MOSFETs with nitrided-oxide gate-dielectrics prepared by rapid thermal processing. IEEE Trans. Electron Dev. 39(1), 134–147 (1992)CrossRefGoogle Scholar
  145. 145.
    K.O. Jeppson, C.M. Swansson, Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices. J. Appl. Phys. 48(5), 2004–2014 (1977)CrossRefGoogle Scholar
  146. 146.
    H. Küflüoglu, M.A. Alam, A generalized reaction-diffusion model with explicit H-H2 dynamics for negative-bias temperature-instability (NBTI) degradation. IEDM Trasn. Electron Dev. 54(5), 1101–1107 (2007)CrossRefGoogle Scholar
  147. 147.
    A.T. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. Joh, S. Krishnan, NBTI impact on transistor and circuit: Models, mechanisms and scaling effects. IEEE IEDM Tech. Digest, 349–352 (2003)Google Scholar
  148. 148.
    D.S. Ang, S. Wang, C.H. Ling, Evidence of two distinct degradation mechanisms from temperature dependence of negative bias stressing of the ultrathin gate p-MOSFET. IEEE Electron Dev. Lett. 26(12), 906–908 (2005)CrossRefGoogle Scholar
  149. 149.
    M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, Y. Rey-Tauriac, N. Revil, On-the-fly characterization of NBTI in ultra-thin gate oxide PMOSFETs. IEEE IEDM Tech. Digest, 109–112 (2004)Google Scholar
  150. 150.
    M. Denais, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, N. Revil, A. Bravaix, Interface trap generation and hole trapping under NBTI and PBTI in advanced CMOS technology. IEEE Trans. Dev. Mat. Reliab. 4(4), 715–722 (2004)CrossRefGoogle Scholar
  151. 151.
    V. Huard, M. Denais, Hole trapping effect on methodology for DC and AC negative bias temperature instability measurements in PMOS transistors. IEEE IRPS, 40–45 (2004)Google Scholar
  152. 152.
    Y. Wang, Effects of interface states and positive charges on NBTI in silicon-oxynitride p-MOSFETs. IEEE TDMR 8(1), 14–21 (2008)Google Scholar
  153. 153.
    T. Yang, C. Shen, M.F. Li, C.H. Ang, C.X. Zhu, Y.C. Yeo, G. Samudra, D.L. Kwong, IEEE Electron Dev. Lett. 26(10), 758–760 (2005)CrossRefGoogle Scholar
  154. 154.
    V.D. Maheta, N. Kumar, S. Purawat, C. Olsen, K. Ahmed, S. Mahapatra, Development of an ultrafast on-the-fly IDLIN technique to study NBTI in plasma and thermal oxynitride p-MOSFETs. IEEE Trans. Electron Dev. 55(10), 2614–2622 (2008)CrossRefGoogle Scholar
  155. 155.
    V.D. Maheta, C. Olsen, K. Ahmed, S. Mahapatra, The impact of nitrogen engineering in silicon oxynitride gate dielectric on negative-bias temperature instability of p-MOSFETs: A study by ultrafast on-the-fly IDLIN technique. IEEE Trans. Electron Dev. 55(7), 1630–1638 (2008)CrossRefGoogle Scholar
  156. 156.
    D. Ielmini, M. Manigrasso, F. Gattel, G. Valentini, A unified model for permanent and recoverable NBTI based on hole trapping and structure relaxation. IEEE IRPS, 26–32 (2009)Google Scholar
  157. 157.
    Z. Ji, L. Lin, J.F. Zhang, B. Kaczer, G. Groeseneken, NBTI lifetime prediction and kinetics at operation bias based on ultrafast pulse measurements. IEEE Trans. Electron Dev. 57(1), 228–236 (2010)CrossRefGoogle Scholar
  158. 158.
    S. Ogawa, M. Shimaya, N. Shiono, Interface trap generation at ultrathin SiO2 (4-6 nm)-Si interfaces during negative-bias temperature aging. J. Appl. Phys. 77(3), 1137–1148 (1995)CrossRefGoogle Scholar
  159. 159.
    C.H. Liu, M.T. Lee, C.Y. Lin, J. Chen, K. Schruefer, J. Brighten, N. Rovedo, T.B. Hook, M.V. Khare, S.F. Huang, C. Wann, T.C. Chen, T.H. Ning, Mechanism and process dependence of negative bias temperature instability (NBTI) for pMOSFETs with ultrathin gate dielectrics. IEEE IEDM Tech. Digest, 861–864 (2001)Google Scholar
  160. 160.
    Y. Mitani, M. Nagamine, H. Satake, A. Toriumi, NBTI mechanism in ultra-thin gate dielectric – Nitrogen-originated mechanism in SiON. IEEE IEDM Tech. Digest, 509–512 (2002)Google Scholar
  161. 161.
    T. Sasaki, K. Kuwazawa, K. Tanaka, J. Kato, D.L. Kwong, Engineering of nitrogen profile in an ultrathin gate insulator to improve transistor performance and NBTI. IEEE Electron Dev. Lett. 24(3), 150–152 (2003)CrossRefGoogle Scholar
  162. 162.
    M. Terai, K. Watanabe, S. Fujieda, Effect of nitrogen profile and fluorine incorporation on negative-bias temperature instability of ultrathin plasma-nitrided SiON MOSFETs. IEEE Trans. Electron Dev. 54(7), 1658–1665 (2007)CrossRefGoogle Scholar
  163. 163.
    Y. Nishida, H. Sayama, K. Ohta, H. Oda, M. Katayama, Y. Inoue, H. Morimoto, M. Inuishi, SoC CMOS technology for NBTI/HCI immune I/O and analog circuits implementing surface and buried channel structures. IEEE IEDM Tech. Digest, 869–872 (2001)Google Scholar
  164. 164.
    J.F. Zhang, W. Eccleston, Positive bias temperature instability in MOSWFETs. IEEE Trans. Electron Dev. 45(1), 116–124 (1998)CrossRefGoogle Scholar
  165. 165.
    C.H. Ho, M.K. Hassan, S.Y. Kim, K. Roy, Analysis of stability degradation of SRAMs using physics-based PBTI model. IEEE Electron Dev. Lett. 35(9), 951–953 (2014)CrossRefGoogle Scholar
  166. 166.
    V. Huard, C. Cuerin, C. Parathasarathy, Novel positive bias temperature instability (PBTI) on n-channel MOSFETs with plasma nitrided oxide. IEEE IRPS, 686–687 (2007)Google Scholar
  167. 167.
    C. Huang, M. Lin, J.W. Liang, A. Juan, K.C. Su, Degradation and failure analysis of polysilicon resistor connecting with tungsten contact and copper line. IEEE IRPS, 731–733 (2011)Google Scholar
  168. 168.
    T. Lee, K. Watson, F. Chen, J. Gill, D. Harmon, T. Sullivan, B. Li, Characterization and reliability of TaN thin film resistors. IEEE IRPS, 502–508 (2004)Google Scholar
  169. 169.
    Y. Li, D. Donnet, A. Grzegorczyk, J. Cavelaars, F. Kuper, Assessing the degradation mechanism and current limitation design rules of SiCr-based thin-film resistors in integrated circuits. IEEE IRPS, 724–730 (2010)Google Scholar
  170. 170.
    R.R. Brynsvold, K. Manning, Constant-current stressing of SiCr-based thin-film resistors: Initial “wearout” investigation. IEEE TDMR 7(2), 259–269 (2007)Google Scholar
  171. 171.
    F. Downey, IMD stack thermal resistance effects on SiCr thin film resistor’s current density performance. IIRW Final Report, 148–150 (2009)Google Scholar
  172. 172.
    N. Layadi, J.I. Colonell, J.T.C. Lee, An introduction to plasma etching for VLSI circuit technology. Bell Labs Tech. J, 155–171 (1999)CrossRefGoogle Scholar
  173. 173.
    B. El-Kareh, Fundamentals of Semiconductor Processing Technologies (Kluwer Academic Publishers, Boston, 1995), p. 282Google Scholar
  174. 174.
    S. Fang, J.P. McVittie, Thin-oxide damage from gate charging during plasma processing. IEEE Electron Dev. Lett. 13(5), 288–290 (1992)CrossRefGoogle Scholar
  175. 175.
    S. Fang, S. Murakawa, J.P. McVittie, A new model for thin oxide degradation from wafer charging in plasma etching. IEEE IEDM Tech. Digest, 61–64 (1992)Google Scholar
  176. 176.
    S. Fang, S. Murakawa, J.P. McVittie, Modeling of oxide breakdown from gate charging during resist ashing. IEEE Trans. Electron Dev. 41(10), 1848–1855 (1994)CrossRefGoogle Scholar
  177. 177.
    P.J. Tzeng, Y.Y.I. Chang, C.C. Yeh, C.C. Chen, C.H. Liu, M.Y. Liu, B.F. Wu, K.S. Chang-Liao, Plasma-charging effects on submicron MOS devices. IEEE Trans. Electron Dev. 49(7), 1151–1157 (2002)CrossRefGoogle Scholar
  178. 178.
    S. Murakawa, S. Fang, J.P. McVittie, Surface charging effects on etched profiles. IEEE IEDM Tech. Digest, 57–60 (1992)Google Scholar
  179. 179.
    S. Krishnan, W.W. Dostalik, K. Brennan, S. Aur, Inductively coupled plasma (ICP) metal etch damage to 35-60A gate oxide. IEEE IEDM Tech. Digest, 731–734 (1996)Google Scholar
  180. 180.
    Z. Wang, J. Ackaert, A. Scarpa, C. Salm, F.G. Kuper, M. Vugts, Strategies to cope with plasma charging damage in design and layout phases. IEEE ICICT, 91–98 (2005)Google Scholar
  181. 181.
    K.P. Cheung, D. Misra, J.I. Colonell, C.T. Liu, Y. Ma, C.P. Chang, W.Y.C. Lai, R. Liu, C.S. Pai, Plasma damage immunity of thin gate oxide grown on very lightly N + implanted silicon. IEEE Electron Dev. Lett. 19(7), 231–233 (1998)CrossRefGoogle Scholar
  182. 182.
    P.K. Hurley, R. Rodrigues, P. Kay, R.P.S. Thakur, D. Clarke, E. Sheehan, A. Mathewson, Plasma process induced degradation of thin inter-polysilicon dielectric layers. Intn’l Symp. Plasma Process-Induced Damage, 45–48 (1999)Google Scholar
  183. 183.
    C.C. Chen, H.C. Lin, C.Y. Chang, M.S. Liang, C.H. Chien, S.K. Hsien, T.Y. Huang, T.S. Chao, Plasma-induced charging damage in ultrathin (3-nm) gate oxide. IEEE Trans. Electron Dec. 47(7), 1355–1360 (2000)CrossRefGoogle Scholar
  184. 184.
    D.A. Gajewski, J. Walls, M. Marin, T. Remmel, TDDB evaluation of plasma-enhanced Si3N4 nitride capacitors in CMOS integration schemes. Intn’l Symp. Plasma Process-Induced Damage, 53–55 (2002)Google Scholar
  185. 185.
    F. Shone, K. Wu, J. Shaw, E. Hokelet, S. Mittal, A. Haranahalli, Gate oxide charging and its elimination for metal antennal capacitor and transistor. VLSI Tech. Digest, 73–74 (1989)Google Scholar
  186. 186.
    Z. Wang, J. Ackaert, C. Salm, F.G. Kuper, M. Tack, E. De Backer, P. Coppens, L. De Schepper, B. Vlachakis, Plasma-charging damage of floating MIM capacitors. IEEE Trans. Electron Dev. 51(6), 1017–1024 (2004)CrossRefGoogle Scholar
  187. 187.
    B. O’Connell, T. Thibeault, P. Chaparala, Plasma damage considerations involving metal-insulator-metal (MIM) capacitors. IEEE Intn’l Conf. on Integrated Circuit Design and Tech, 123–126 (2004)Google Scholar
  188. 188.
    B.G. Streetman, Solid State Electronic Devices (Prentice Hall, New Jersey, 1980), pp. 405–410Google Scholar
  189. 189.
    W.J. Dennehy, A.G. Holmes-Siedle, W.F. Leopold, Transient radiation response of complementary-symmetry MOS integrated circuits. IEEE Trans. Nucl. Sci. 16(6), 114–119 (1969)CrossRefGoogle Scholar
  190. 190.
    B.L. Gregory, B.D. Shafer, Latch-up in CMOS integrated circuits. IEEE Trans. Nucl. Sci. 20(6), 293–299 (1973)CrossRefGoogle Scholar
  191. 191.
    D.B. Estreich, The Physics and Modeling of Latch-Up in CMOS Integrated Circuits. Techn. Report No. G-201-9 (Stanford University, 1980)Google Scholar
  192. 192.
    D.B. Esreich, R.W. Dutton, Modeling latch-up in CMOS integrated circuits. IEEE Trans. CAD of IC and Syst. CAD-1(4), 157–162 (1982)CrossRefGoogle Scholar
  193. 193.
    R. Menozzi, L. Selmi, E. Sangiogi, B. Riccò, Effect of the interaction of neighboring structures on the latch-up behavior of C-MOS ICs. IEEE Trans. Electron. Dec. 38(8), 1978–1981 (1991)CrossRefGoogle Scholar
  194. 194.
    R.W. Sexton, Destructive single-event effects in semiconductor devices and ICs. IEEE Trans. Electron Dev. 50(3), 603–621 (2003)Google Scholar
  195. 195.
    H.N. Becker, T.F. Miyahira, A.H. Johnston, Latent damage in CMOS devices from single-event latch-up. IEEE Trans. Nuclear Sci. 49(6), 3009–3015 (2002)CrossRefGoogle Scholar
  196. 196.
    L. Defern, G. Romaen, C. Claeys, R. Mertens, The influence of lifetime on the lateral parasitic bipolar transistors in CMOS. ESSDERC, 775–778 (1987)Google Scholar
  197. 197.
    W.R. Dawes, G.F. Derbenwick, Prevention of CMOS latch-up by gold doping. IEEE Trans. Nuclear Sci. 23(6), 2027–2030 (1976)CrossRefGoogle Scholar
  198. 198.
    J.R. Adams, R.J. Sokel, Neutron irradiation for prevention of latch-up in OS integrated circuits. IEEE Trans. Nuclear Sci. 26(6), 5069–5073 (1979)CrossRefGoogle Scholar
  199. 199.
    D.B. Estreich, A. Ochoa, R.W. Dutton, An analysis of latch-up prevention in CMOS IC’s using an epitaxial buried-layer process. IEEE IEDM Tech. Digest, 230–234 (1978)Google Scholar
  200. 200.
    S. Odanaka, T. Yabu, N. Shimuzu, H. Umimoto, T. Ohzone, A self-aligned retrograde twin-well structure with buried p+ -layer. IEEE Electron Dev. Lett. 10(6), 280–282 (1989)CrossRefGoogle Scholar
  201. 201.
    R.D. Rung, C.J. Dell’oca, L.G. Walker, A retrograde p-well for higher density CMOS. IEEE Trans. Electron Dev. EF-28, 1115–1119 (1981)CrossRefGoogle Scholar
  202. 202.
    Y. Niitsu, G. Sasaki, H. Nihira, K. Kanzaki, Resistance modulation effect in n-Well CMOS. IEEE Trans. Electron Dev. ED-32(11), 2227–2231 (1985)CrossRefGoogle Scholar
  203. 203.
    Y. Song, J.S. Cable, K.N. Vu, A.A. Witteles, The dependence of latch-up sensitivity on layout features in CMOS integrated circuits. IEEE Trans. Nuclear Sci. NS-33(6), 1493–1498 (1986)CrossRefGoogle Scholar
  204. 204.
    R.D. Rung, H. Momose, Y. Nagakubu, Deep trench isolated CMOS devices. IEEE IEDM Tech. Digest, 237–243 (1982)Google Scholar
  205. 205.
    S. Bhattacharya, S. Barnerjee, J. Lee, A. Tasch, A. Chatterjee, The impact of trench isolation on latch-up immunity in bulk nonepitaxial CMOS. IEEE Electron Dev. Lett. 12(2), 77–79 (1991)CrossRefGoogle Scholar
  206. 206.
    H. Kitahara, T. Tsukihara, M. Sakai, J. Marioka, K. Deguchi, K. Yonemura, T. Kikuchi, S. Onoue, K. Shirai, K. Watanabe, K. Kimura, A deep trench isolation integrated in a 0.13um BiCD process technology for analog power ICs. IEEE BCTM Tech. Digest, 206–209 (2008)Google Scholar
  207. 207.
    R.S. Payne, W.R. Grant, W.J. Bertram, Elimination of latch-up in bulk CMOS. IEEE IEDM Tech. Digest, 248–251 (1980)Google Scholar
  208. 208.
    R. Menozzi, L. Selmi, E. Sangiogi, G. Grisenza, T. Cavioni, B. Riccò, Layout dependence of CMOS latch-up. IEEE Trans. Electron. Dec. 35(11), 1988 (1978-1981)Google Scholar
  209. 209.
    S. Gupta, J.C. Beckman, S.L. Kosier, Improved latch-up immunity in junction-isolated smart power ICs with unbiased guard ring. IEEE Electron Dev. Lett. 22(12), 600–602 (2001)CrossRefGoogle Scholar
  210. 210.
    IC Latch-up test, Joint Electron Device Engineering Council (JEDEC) Standard, project 6962-1880, 2011Google Scholar
  211. 211.
    R. Versari, A. Pieracci, S. Manzini, C. Contiero, R. Riccò, Hot carrier reliability in submicrometer LDMOS transistors. IEEE IEDM Tech. Digest, 371–374 (1997)Google Scholar
  212. 212.
    S. Manzini, C. Contiero, Hot-electron-induced degradation in high-voltage submicron DMOS transistors. IEEE ISPSD, 65–68 (1996)Google Scholar
  213. 213.
    P. Moens, G. Van den Bosch, G. Goreseneken, Hot-carrier degradation phenomena in lateral and vertical DMOS transistors. IEEE Trans. Electron Dev. 51(4), 623–628 (2004)CrossRefGoogle Scholar
  214. 214.
    P. Moens, G. Van den Bosch, C. De Keukeleire, R. Degraeve, M. Tack, G. Goreseneken, Hot hole degradation effects in lateral nDMOS transistors. IEEE Trans. Electron Dev. 51(10), 1704–1710 (2004)CrossRefGoogle Scholar
  215. 215.
    C.C. Cheng, J.W. Wu, C.C. Lee, J.H. Shao, T. Wang, Hot carrier degradation in LDMOS power transistors. IEEE Proc. IPFA, 283–286 (2004)Google Scholar
  216. 216.
    P. Moens, J. Mertens, F. Bauwens, P. Joris, W. De Ceuninck, M. Tack, A comprehensive model for hot carrier degradation in LDMOS transistors. IEEE IRPS Tech. Digest, 492–497 (2007)Google Scholar
  217. 217.
    J.F. Chen, K.S. Tian, S.Y. Chen, K.M. Wu, C.M. Liu, On-resistance induced by hot-carrier injection in LDMOS transistors with STI in the drift region. IEEE Electron Dev. Lett. 29(9), 1071–1073 (2008)CrossRefGoogle Scholar
  218. 218.
    E. Riedelberger, C. Jungemann, A. Spitzer, M. Stecher, W. Gustin, Comprehensive analysis of the degradation of a lateral DMOS due to hot-carrier stress. IIRW Final Report, 77–81 (2009)Google Scholar
  219. 219.
    P. Moens, G. Van den bosch, D. Wojciechowski, F. Bauwens, H. De Vleeschouwer, F. De Pestel, Charge trapping effects and interface state generation in a 40 V lateral resurf pDMOS transistor. ESSDERC, 407–410 (2005)Google Scholar
  220. 220.
    Power MOSFET single-shot and repetitive avalanche ruggedness rating, Philips Semiconductors Applications, AN10273-1, 2003Google Scholar
  221. 221.
    Vishay Siliconix, Unclamped inductive switching rugged MOSFETs for rugged environments, AN601, 1994.Google Scholar
  222. 222.
    K. Fischer, K. Shenai, Dynamics of power MOSFET switching under unclamped inductive loading conditions. IEEE Trans. Electron Dev. 43(6), 1007–1015 (1996)CrossRefGoogle Scholar
  223. 223.
    D.L. Blackburn, Power MSOFET failure revisited, in PESC’88, 19th Annual Power Electronics Specialists Conference, (1988), pp. 681–682CrossRefGoogle Scholar
  224. 224.
    R.R. Stoltenburg, Boundary of power-MOSFET, unclamped inductive-switching (UIS), avalanche-current capability, in IEEE Proc. Fourth Annual Applied Power Electronics Conference, (1989), pp. 359–364, SCrossRefGoogle Scholar
  225. 225.
    S.K. Ghandi, Semiconductor Power Devices, Physics of Operation and Fabrication Technology (Wiley, New York, NY, 1977)Google Scholar
  226. 226.
    L.F. Coffin Jr., Met. Eng. Q. 3, 15–24 (1963)Google Scholar
  227. 227.
    S. Manson, Thermal Stress and Low-Cycle Fatigue (McGraw-Hill, New York, 1966)CrossRefGoogle Scholar
  228. 228.
    C.F. Dunn, J.W. McPherson, Temperature-cycling acceleration factor for aluminum metallization failure in VLSI applications. IEEE IRPS Tech. Digest, 252–258 (1990)Google Scholar
  229. 229.
    Automotive Electronics Council, AEC-Q100, Failure Mechanisms Based on Stress Qualification for Integrated Circuits. Revision G (2007)Google Scholar
  230. 230.
    Y. Chung, H. Xu, R. Ida, B. Baird, Snapback breakdown dynamics and ESD susceptibility of LDMOS. IEEE IRPS Tech. Digest, 352–356 (2006)Google Scholar
  231. 231.
    C. Duvvury, R.N. Rountree, H.J. Stiegler, T. Polgreen, D. Corum, ESD phenomena in graded junction devices. IEEE IRPS Tech. Digest, 71–76 (1989)Google Scholar
  232. 232.
    A. Amerasekera, C. Duvvury, ESD in silicon integrated circuits, 2nd edn. (Wiley, 2002)Google Scholar
  233. 233.
    W.Y. Chen, M.D. Ker, Y.N. Jou, Y.J. Huang, G.L. Lin, Source-side engineering to increase holding voltage on LDMOS in a 0.5-μm 16-V BCD technology to avoid latch-up failure. IEEE IPFA Proc, 41–44 (2009)Google Scholar
  234. 234.
    P. Gross, S.H. Voldmann, W.H. Guthrie, ESD qualification and testing of semiconductor electronic components. IEEE ECTC, 671–681 (1996)Google Scholar
  235. 235.
    S.L. Chen, T.S. Wu, H.W. Chen, C.H. Shih, P.Y. Chen, Optimized latch-up design of a high voltage DMOSFET. IEEE ICSICT, 1689–1691 (2010)Google Scholar
  236. 236.
    H. Gossner, T. Müller-Lynch, K. Esmark, M. Stecher, Wide range control of the sustaining voltage of ESD protection elements realized in a smart power technology. EOS/ESD Symp, 19–27 (1999)Google Scholar
  237. 237.
    W.Y. Chen, M.D. Ker, Y.J. Huang, Y.N. Jou, G.L. Lin, Measurement on snapback holding voltage of high voltage LDMOS for latch-up considerations. Circuits and Systems, 61–64 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Badih El-Kareh
    • 1
  • Lou N. Hutter
    • 2
  1. 1.PIYECedar ParkUSA
  2. 2.Lou Hutter ConsultingDallasUSA

Personalised recommendations