The World Is Analog

  • Badih El-Kareh
  • Lou N. Hutter


As digital processing extends to more products, an ever-increasing number of analog integrated chips are required. This is because analog processing is essential in allowing the benefits of digital processing to be realized by providing the interface between the real world (analog) and the computer (digital). This chapter covers the diversity of analog applications and voltage requirements and gives a high-level overview of the many process technologies and components that are encountered in the analog world.


  1. 1.
    M.E. Hoff Jr, S. Mazor, F. Faggin, Memory system for a multi-chip digital computer, U.S. Patent 3,821,715, 28 June 1974Google Scholar
  2. 2.
    G. Brantingham and R. Wiggins, Speech synthesis integrated circuit device, U.S. Patent 4,209,836, 24 June 1980Google Scholar
  3. 3.
    N. Gershenfeld, R. Krikorian, D. Cohen, The Internet of things. Sci. Am., 76–81 (2004)Google Scholar
  4. 4.
    J. Yoshida, NXP’s foray into ‘internet of things’ starts with light bulbs. EE Times (May 17, 2011)Google Scholar
  5. 5.
    G. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)Google Scholar
  6. 6.
    Texas Instruments, Analog Signal Chain Guide (Rev. A),, technical documents
  7. 7.
    L. Hutter, High-performance technologies for an analog-centric world, in Analog Leaders Forum, (Dongbu HiTek, Seoul, 2011)Google Scholar
  8. 8.
    S. Natarajan, M. Armstrong, M. Bost, R. Brain, M. Brazier, C.-H. Chang, V. Chikarmane, M. Childs, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He, R. Heussner, R. James, I. Jin, C. Kenyon, S. Klopcic, S.-H. Lee, M. Liu, S. Lodha, B. McFadden, A. Murthy, L. Neiberg, J. Neirynck, P. Packan, S. Pae, C. Parker, C. Pelto, L. Pipes, J. Sebastian, J. Seiple, B. Sell, S. Sivakumar, B. Song, K. Tone, T. Troeger, C. Weber, M. Yang, A. Yeoh, K. Zhang, A 32 nm logic technology featuring 2nd generation high-k + metal-gate transistors, enhanced channel strain and 0.171um2 SRAM cell size in a 291 Mb array. IEEE IEDM Tech. Digest, 1–3 (2008)Google Scholar
  9. 9.
    J. Scampini, Introduction to computed tomography (CT) medical imaging, Tutorial 4682., Maxim website, May 2010
  10. 10.
    K.M. Cao, W. Liu, X. Jin, K. Vasanth, K. Green, J. Krick, T. Vrotsos, C. Hu, Modeling of pocket implanted MOSFETs for anomalous analog behavior. IEEE IEDM, Tech. Digest, 171–174 (1999)Google Scholar
  11. 11.
    S. Thompson, P. Packan, M. Bohr, MOS scaling: Transistor challenges for the 21st century. Intel Tech. J. 1-19, Q3 (1998)Google Scholar
  12. 12.
    S. Ekbote, K. Benaissa, B. Obradovic, S. Liu, H. Shichijo, F. Hou, T. Blythe, T.W. Houston, S. Martin, R. Taylor, A. Singh, H. Yang, G. Baldwin, 45 nm low-power CMOS SoC technology with aggressive reduction of random variation for SRAM and analog transistors. VLSI Tech. Symp., 160–161 (2008)Google Scholar
  13. 13.
    R. Baker, IEEE press series on microelectronic systems, in CMOS Circuit Design, Layout, and Simulation, 3rd edn., (Wiley, 2010)Google Scholar
  14. 14.
    Freescale News Release, Freescale introduces Kinetis KL02, world’s smallest ARM powered microcontroller, Feb 26, 2013Google Scholar
  15. 15.
    L. W. Nagel and D. O. Pederson, SPICE (Simulation Program with Integrated Circuit Emphasis), Memorandum No. ERL-M382, University of California, Berkeley, Apr 1973Google Scholar
  16. 16.
    G. Ritchie, J. Candy, W. Ninke, Interpolative digital-to-analog converters. IEEE Trans. Comm. COM-22(11), 1797–1806 (1974)CrossRefGoogle Scholar
  17. 17.
    I. Galton, Why dynamic-element-matching DACs work. IEEE Trans. Circuits. Syst. Express Briefs 57(2), 69–74 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Temes, J. Candy, A tutorial discussion of the oversampling method for A/D and D/A conversion. IEEE Symp. Circuits Syst., 910–913 (1990)Google Scholar
  19. 19.
    G. Taylor, I. Galton, A mostly-digital variable-rate continuous-time delta-sigma modulator ADC. IEEE J. Solid State Circuits 45(12), 2634–2646 (2010)CrossRefGoogle Scholar
  20. 20.
    V. Rentala, V. Srinivasan, V. Wang, S. Ramaswamy, B. Haroun, M. Corsi, Low power ADCs for wireless communications. IEEE Midwest Symp. Circuits Syst., 694–697 (2012)Google Scholar
  21. 21.
    K. Joardar, Substrate crosstalk in BiCMOS mixed mode integrated circuits. Solid State Electron. 39(4), 511–516 (1996)CrossRefGoogle Scholar
  22. 22.
    R. Aparicio, A. Hajimiri, Capacity limits and matching properties of lateral flux integrated capacitors. IEEE Conf. Custom Integrated Circuits, 365–368 (2001)Google Scholar
  23. 23.
    J.C. Mitros, C.Y. Tsai, H. Shichijo, K. Kunz, A. Morton, D. Goodpaster, D. Mosher, T.R. Efland, High-voltage drain extended MOS transistors for 0.18um logic CMOS process. IEEE Trans. Electron Devices 48(8), 1751–1755 (2001)CrossRefGoogle Scholar
  24. 24.
    D. Buss, B.L. Evans, J. Bellay, W. Krenik, B. Haroun, D. Leipold, K. Maggio, J.-Y. Yang, T. Moise, SoC CMOS technology for personal internet products. IEEE Trans. Electron Devices 50(3), 546–556 (2003)CrossRefGoogle Scholar
  25. 25.
    S. Subbanna, G. Freeman, S. Koester, K. Rim, A. Joseph, D. Harame, High-performance silicon-germanium technology. DRC Tech. Digest, 195–196 (2005)Google Scholar
  26. 26.
    B. El-Kareh, S. Balster, W. Leitz, P. Steinrnannl, H. Yasuda, M. Corsi, K. Dawoodi, C. Dirnecker, P. Foglietti, A. Haeusler, P. Menz, M. Ramin, T. Schamagl, M. Schiekofer, M. Schober, U. Schulz, L. Swanson, D. Tatman, M. Waitschul, J.W. Weijtmans, C. Willis, A 5 V complementary-SiGe BiCMOS technology for high-speed precision analog circuits. IEEE BCTM Proc., 211–214 (2003)Google Scholar
  27. 27.
    R. Payne, M. Corsi, D. Smith, T.-L. Hsieh, S. Kaylor, A 16b 100-160 MS/s SiGe BiCMOS pipelined ADC with 100dBFS SFDR. IEEE Solid-State Circuits Conf., 2613–2622 (2010)Google Scholar
  28. 28.
    K. Chew, K. Yeo, S. Chu, Impact of technology scaling on the 1/f noise of thin and thick gate oxide deep submicron NMOS transistors. IEEE Circuits Devices Syst. Proc. 151(5), 415–421 (2004)CrossRefGoogle Scholar
  29. 29.
    Y. K. Choi, I. Y Park, H.-C. Lim, M.Y. Kim, C.J. Yoon, N.-J Kim, K.D. Yoo, and L. N. Hutter, “A versatile 30 V analog CMOS process in a 0.18um technology for power management applications,” ISPSD, 219–222, 2011Google Scholar
  30. 30.
    V. Menon, Applications drive analog technology development and innovation, Key note, ISQED (2012)Google Scholar
  31. 31.
    J. Fattaruso, M. De Wit, G. Warwar, K. Tan, R. Hester, The effect of dielectric relaxation on charge-redistribution A/D converters. IEEE J. Sold-State Circuits 25(6), 1550–1561 (1990)CrossRefGoogle Scholar
  32. 32.
    L. Hutter, J. Hellums, Analog CMOS technology. Semicon Japan (1999)Google Scholar
  33. 33.
    C. Contiero, P. Galbiati, A. Merlini, A. Moscatelli, F. Tampellini, L. Vecchiet, Trends and Issues in BCD Smart Power Technologies (ESSDERC, 1999), pp. 111–118Google Scholar
  34. 34.
    S. Pendharkar, R. Pan, T. Tamura, B. Todd, T. Efland, 7 to 30 V state-of-art power device implementation in 0.25um LBC7 BiCMOS-DMOS process technology. ISPSD, 419–422 (2004)Google Scholar
  35. 35.
    K. Ko, I.Y. Park, Y.K. Choi, C.J. Yoon, J.H. Moon, K.M. Park, H.C. Lim, S.Y. Park, N.J. Kim, K.D. Yoo, L.N. Hutter, BD180LV – 0.18um BCD technology with best-in-class LDMOS from 7 V to 30 V. Intnl. Symp. Power Semicon. Devices, 71–74 (2011)Google Scholar
  36. 36.
    A. Kalnitsky, Y. Tseng, T. Chien, C. Chang, F. Tsui, 1 Milli-Ohm/Square Bondable Post-Passivation Interconnect for Power Management Technologies (Power SoC, 2012)Google Scholar
  37. 37.
    T. Karino, O. Sasaki, M. Yamaji, H. Sumida, 700 V PIC technology based on 0.35um design for AC/DC power units. Intnl. Symp. Power Semicon. Devices, 209–212 (2012)Google Scholar
  38. 38.
    The International Technology Roadmap for Semiconductors (ITRS)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Badih El-Kareh
    • 1
  • Lou N. Hutter
    • 2
  1. 1.PIYECedar ParkUSA
  2. 2.Lou Hutter ConsultingDallasUSA

Personalised recommendations