Model, Scale, and Measurement

  • Nicolae Suciu
Part of the Geosystems Mathematics book series (GSMA)


In this chapter, relations between model, scale, and measurement will be discussed. A particular attention will be paid to the perspective of using spatio-temporal upscaling to bring model output closer to the measured observable of the physical system, with emphasis on hydrological observations.


  1. 1.
    Andričević, R.: Effects of local dispersion and sampling volume on the evolution of concentration fluctuations in aquifers. Water Resour. Res. 34(5), 1115–1129 (1998)CrossRefGoogle Scholar
  2. 2.
    Battiato, I.: Multiscale dynamics of reactive fronts in heterogeneous media with fluctuating forcings. In: SIAM Conference on Mathematical and Computational Issues in the Geosciences September 11–14, 2017, Erlangen.
  3. 3.
    Bayer-Raich, M., Jarsjö, J., Liedl, R., Ptak, T., Teutsch, G.: Average contaminant concentration and mass flow in aquifers from time-dependent pumping well data: analytical framework. Water Resour. Res. 40(8), W08303 (2004)CrossRefGoogle Scholar
  4. 4.
    Caroni, E., Fiorotto, V.: Analysis of concentration as sampled in. Transp. Porous Media 59(1), 19–45 (2005)CrossRefGoogle Scholar
  5. 5.
    Crăciun, M., Vamoş, C., Suciu, N.: Analysis and generation of groundwater concentration time series. Adv. Water Resour. 111, 20–30 (2018)CrossRefGoogle Scholar
  6. 6.
    Cushman, J.H.: Multiphase transport equations: I-general equation for macroscopic statistical, local space-time homogeneity. Transp. Theory Stat. Phys. 12(1), 35–71 (1983)MathSciNetCrossRefGoogle Scholar
  7. 7.
    de Barros, F.P.J., Fiori, A.: First-order based cumulative distribution function for solute concentration in heterogeneous aquifers: theoretical analysis and implications for human health risk assessment. Water Resour. Res. 50(5), 4018–4037 (2014)CrossRefGoogle Scholar
  8. 8.
    Destouni, G., Graham, W.: The influence of observation method on local concentration statistics in the subsurface. Water Resour. Res. 33(4), 663–676 (1997)CrossRefGoogle Scholar
  9. 9.
    Gray, W.G., Miller, C.T.: A generalization of averaging theorems for porous medium analysis. Adv. Water Res. 62, 227–327 (2013)CrossRefGoogle Scholar
  10. 10.
    Gray, W.G., Dye, A.L., McClure, J.E., Pyrak-Nolte, L.J., Miller, C.T.: On the dynamics and kinematics of two-fluid-phase flow in porous media. Water Resour. Res. 51(7), 5365–5381 (2015)CrossRefGoogle Scholar
  11. 11.
    He, Y., Sykes, J.F.: On the spatial-temporal averaging method for modeling transport in porous media. Transp. Porous Media 22(1), 1–51 (1996)CrossRefGoogle Scholar
  12. 12.
    Mailloux, B.J., Fuller, M.E., Rose, G.F., Onstott, T.C., DeFlaun, M.F., Alvarez, E., Hemingway, C., Hallet, R.B., Phelps, T.J., Griffin, T.: A modular injection system, multilevel sampler, and manifold for tracer tests. Ground Water 41(6), 816–827 (2003)CrossRefGoogle Scholar
  13. 13.
    McClure, J.E., Dye, A.L., Miller, C.T., Gray, W.G.: On the consistency of scale among experiments, theory, and simulation. Hydrol. Earth Syst. Sci. 21(2), 1063 (2017)CrossRefGoogle Scholar
  14. 14.
    Nolen, J., Papanicolaou, G., Pironneau, O.: A framework for adaptive multiscale methods for elliptic problems. Multiscale Model. Simul. 7, 171–196 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nordbotten, J.M., Celia, M.A., Dahle, H.K., Hassanizadeh, S.M.: Interpretation of macroscale variables in Darcy’s law. Water Resour. Res. 43(8), W08430 (2007)CrossRefGoogle Scholar
  16. 16.
    Ptak, T., Schwarz, R., Holder, T., Teutsch, G.: Ein neues Verfahren zur Quantifizierung der Grundwasserimmission: I. Theoretische Grundlagen. Grundwasser 4(5), 176–183 (2000)CrossRefGoogle Scholar
  17. 17.
    Schüler, L., Suciu, N., Knabner, P., Attinger, S.: A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers. Adv. Water Resour. 96, 55–67 (2016)CrossRefGoogle Scholar
  18. 18.
    Schwede, R.L., Cirpka, O.A., Nowak, W., Neuweiler, I.: Impact of sampling volume on the probability density function of steady state concentration. Water Resour. Res. 44(12), W12433 (2008)CrossRefGoogle Scholar
  19. 19.
    Skøien, J.O., Blöschl, G., Western, A.W.: Characteristic space scales and timescales in hydrology. Water Resour. Res. 39(10), 1304 (2003)CrossRefGoogle Scholar
  20. 20.
    Srzic, V., Cvetkovic, V., Andricevic, R., Gotovac, H.: Impact of aquifer heterogeneity structure and local-scale dispersion on solute concentration uncertainty. Water Resour. Res. 49(6), 3712–3728CrossRefGoogle Scholar
  21. 21.
    Suciu, N.: Mathematical background for diffusion processes in natural porous media. Forschungszentrum Jülich/ICG-4, Internal Report No. 501800 (2000)Google Scholar
  22. 22.
    Suciu, N.: On the connection between the microscopic and macroscopic modeling of the thermodynamic processes (in Romanian). Ed. Univ. Piteşti, Piteşti (2001)Google Scholar
  23. 23.
    Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water. Resour. 69, 114–133 (2014)CrossRefGoogle Scholar
  24. 24.
    Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409 (2006)zbMATHGoogle Scholar
  25. 25.
    Suciu, N., Radu, F.A., Attinger, S., Schüler, L., Knabner, P.: A Fokker–Planck approach for probability distributions of species concentrations transported in heterogeneous media. J. Comput. Appl. Math. 289, 241–252 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Suciu, N., Schüler, L., Attinger, S., Knabner, P.: Towards a filtered density function approach for reactive transport in groundwater. Adv. Water Resour. 90, 83–98 (2016)CrossRefGoogle Scholar
  27. 27.
    Teutsch, G., Ptak, T., Schwarz, R., Holder, T.: Ein neues Verfahren zur Quantifizierung der Grundwasserimmission: I. Theoretische Grundlagen. Grundwasser 4(5), 170–175 (2000)CrossRefGoogle Scholar
  28. 28.
    Tonina, D., Bellin, A.: Effects of pore-scale dispersion, degree of heterogeneity, sampling size, and source volume on the concentration moments of conservative solutes in heterogeneous formations. Adv. Water Resour. 31(2), 339–354 (2008)CrossRefGoogle Scholar
  29. 29.
    Vamoş, C.: Continuous fields associated to corpuscular systems (in Romanian). Risoprint, Cluj-Napoca (2007). English version
  30. 30.
    Vamoş, C., Georgescu, A., Suciu, N., Turcu, I.: Balance equations for physical systems with corpuscular structure. Phys. A: Stat. Mech. Appl. 227(1), 81–92 (1996)CrossRefGoogle Scholar
  31. 31.
    Vamoş, C., Suciu, N., Peculea, M.: Numerical modelling of the one-dimensional diffusion by random walkers. Rev. Anal. Numér. Théor. Approx. 26(1), 237–247 (1997)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Vamoş, C., Suciu, N., Georgescu, A.: Hydrodynamic equations for one-dimensional systems of inelastic particles. Phys. Rev. E 55(5), 6277–6280 (1997)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Vamoş, C., Suciu, N., Blaj, W.: Derivation of one-dimensional hydrodynamic model for stock price evolution. Phys. A: Stat. Mech. Appl. 287(3), 461–467 (2000)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Vamoş, C., Suciu, N., Vereecken, H.: Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys. 186(2), 527–244 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolae Suciu
    • 1
    • 2
  1. 1.Department of MathematicsFriedrich-Alexander University of Erlangen-NürnbergErlangenGermany
  2. 2.Tiberiu Popoviciu Institute of Numerical AnalysisCluj-Napoca Branch of the Romanian AcademyCluj-NapocaRomania

Personalised recommendations