Advertisement

Diffusion in Random Velocity Fields

  • Nicolae Suciu
Chapter
Part of the Geosystems Mathematics book series (GSMA)

Abstract

Classical stochastic theories for transport in subsurface are revisited and transport models are formulated as stochastic processes. The process of diffusion with space variable drift coefficients is proposed as a general frame for stochastic modeling in subsurface hydrology. Stochastic homogeneity properties, first order approximations, and the occurrence of anomalous diffusion, ergodic, and self-averaging properties are presented.

References

  1. 1.
    Aït-Sahalia, Y.: Telling from discrete data whether the underlying continuous-time model is a diffusion. J. Financ. 57, 2075–2112 (2002)Google Scholar
  2. 2.
    Arnold, V.I.: Ordinary Differential Equations. Springer, Berlin (1992)Google Scholar
  3. 3.
    Attinger, S., Dentz, M., Kinzelbach, H., Kinzelbach, W.: Temporal behavior of a solute cloud in a chemically heterogeneous porous medium. J. Fluid Mech. 386, 77–104 (1999)zbMATHGoogle Scholar
  4. 4.
    Avellaneda, M., Majda, M.: Stieltjes integral representation and effective diffusivity bounds for turbulent diffusion. Phys. Rev. Lett. 62(7), 753–755 (1989)Google Scholar
  5. 5.
    Avellaneda, M., Majda, M.: Superdiffusion in nearly stratified flows. J. Stat. Phys. 69(3/4), 689–729 (1992)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Avellaneda, M., Elliot, F. Jr., Apelian, C.: Trapping, percolation and anomalous diffusion of particles in a two-dimensional random field. J. Stat. Phys. 72(5/6), 1227–1304 (1993)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Balescu, R.: Transport Processes in Plasmas. North-Holland, Amsterdam (1988)zbMATHGoogle Scholar
  8. 8.
    Balescu, R., Wang, H-D., Misguich, J.H.: Langevin equation versus kinetic equation: subdiffusive behavior of charged particles in a stochastic magnetic field. Phys. Plasmas 1(12), 3826–3842 (1994)Google Scholar
  9. 9.
    Bear, J.: On the tensor form of dispersion in porous media. J. Geophys. Res. 66(4), 1185–1197 (1961)MathSciNetGoogle Scholar
  10. 10.
    Bhattacharya, R.N., Gupta, V.K.: A theoretical explanation of solute dispersion in saturated porous media at the Darcy scale. Water Resour. Res. 19, 934–944 (1983)Google Scholar
  11. 11.
    Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetGoogle Scholar
  12. 12.
    Bouchaud, J.-P., Georges, A., Koplik, J., Provata, A., Redner, S.: Superdiffusion in random velocity fields. Phys. Rev. Lett. 64, 2503–2506 (1990)Google Scholar
  13. 13.
    Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999)zbMATHGoogle Scholar
  14. 14.
    Clincy, M., Kinzelbach, H.: Stratified disordered media: exact solutions for transport parameters and their self-averaging properties. J. Phys. A. Math. Gen. 34, 7142–7152 (2001)zbMATHGoogle Scholar
  15. 15.
    Colucci, P.J., Jaberi, F.A., Givi, P.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dagan, G.: Solute transport in heterogeneous porous formations. J. Fluid Mech. 145, 151–177 (1984)zbMATHGoogle Scholar
  17. 17.
    Dagan, G.: Theory of solute transport by groundwater. Annu. Rev. Fluid Mech. 19, 183–215 (1987)zbMATHGoogle Scholar
  18. 18.
    Dagan, G.: Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resour. Res. 24, 1491–1500 (1988)Google Scholar
  19. 19.
    Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin (1989)Google Scholar
  20. 20.
    Dagan, G.: Transport in heterogeneous porous formations: spatial moments, ergodicity, and effective dispersion. Water Resour. Res. 26(6), 1281–1290 (1990)Google Scholar
  21. 21.
    Deng, W., Barkai, E.: Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E 79, 011112 (2009)MathSciNetGoogle Scholar
  22. 22.
    Deng, F.W., Cushman, J.H.: On higher-order corrections to the flow velocity covariance tensor. Water Resour. Res. 31(7), 1659–1672 (1995)Google Scholar
  23. 23.
    Dentz, M., de Barros, F.P.J.: Dispersion variance for transport in heterogeneous porous media. Water Resour. Res. 49, 3443–3461 (2013)Google Scholar
  24. 24.
    Dentz, M., Kinzelbach, H., Attinger, S., Kinzelbach, W.: Temporal behavior of a solute cloud in a heterogeneous porous medium 1. Point-like injection. Water Resour. Res. 36, 3591–3604 (2000)zbMATHGoogle Scholar
  25. 25.
    Dentz, M., Kinzelbach, H., Attinger, S., Kinzelbach, W.: Temporal behavior of a solute cloud in a heterogeneous porous medium 2. Spatially extended injection. Water Resour. Res. 36, 3605–3614 (2000)zbMATHGoogle Scholar
  26. 26.
    Di Federico, V., Neuman, S.P.: Scaling of random fields by means of truncated power variograms and associated spectra. Water Resour. Res. 33, 1075–1085 (1997)Google Scholar
  27. 27.
    Doob, J.L.: Stochastic Processes. Wiley, New York (1990)zbMATHGoogle Scholar
  28. 28.
    Dybiec, B., Gudowska-Nowak, E.: Discriminating between normal and anomalous random walks. Phys. Rev. E 80, 061122 (2009)Google Scholar
  29. 29.
    Eberhard, J.: Approximations for transport parameters and self-averaging properties for point-like injections in heterogeneous media. J. Phys. A. Math. Gen. 37, 2549–2571 (2004)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Eberhard, J., Suciu, N., Vamos, C.: On the self-averaging of dispersion for transport in quasi-periodic random media. J. Phys. A: Math. Theor. 40, 597–610 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Fannjiang, A., Komorowski, T.: Diffusive and nondiffusive limits of transport in nonmixing flows. SIAM J. Appl. Math. 62, 909–923 (2002)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Fiori, A.: Finite Peclet extensions of Dagan’s solutions to transport in anisotropic heterogeneous formations. Water Resour. Res. 32, 193–198 (1996)Google Scholar
  33. 33.
    Fiori, A.: On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity. Water Resour. Res. 37(2), 235–242 (2001)Google Scholar
  34. 34.
    Fiori, A., Dagan, G.: Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications. J. Contam. Hydrol. 45, 139–163 (2000)Google Scholar
  35. 35.
    Fried, J.J.: Groundwater Pollution. Elsevier, New York (1975)Google Scholar
  36. 36.
    Gardiner, C.W.: Stochastic Methods. Springer, Berlin (2009)zbMATHGoogle Scholar
  37. 37.
    Gelhar, L.W.: Stochastic subsurface hydrology from theory to applications. Water Resour. Res. 22(9S), 135S–145S (1986)Google Scholar
  38. 38.
    Gelhar, L.W., Axness, C.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161–180 (1983)Google Scholar
  39. 39.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  40. 40.
    Honkonen, G.: Stochastic processes with stable distributions in random environments. Phys. Rev. E 53(1), 327–331 (1996)MathSciNetGoogle Scholar
  41. 41.
    Isichenko, M.B.: Percolation, Statistical Topography, and Transport in Random Media. Rev. Mod. Phys. 64, 961 (1992)MathSciNetGoogle Scholar
  42. 42.
    Jaekel, U., Vereecken, H.: Renormalization group analysis of macrodispersion in a directed random flow. Water Resour. Res. 33, 2287–2299 (1997)Google Scholar
  43. 43.
    Jeon, J.-H., Metzler, R.: Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 81, 021103 (2010)MathSciNetGoogle Scholar
  44. 44.
    Jury, W.A., Sposito, G.: Field calibration and validation of solute transport models for the unsaturated zone. Soil Sci. Soc. Am. J. 49, 1331–1241 (1985)Google Scholar
  45. 45.
    Kesten, H., Papanicolaou, G.C.: A limit theorem for turbulent diffusion. Commun. Math. Phys. 65, 97–128 (1979)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Kitanidis, P.K.: Prediction by the method of moments of transport in a heterogeneous formation. J. Hydrol. 102, 453–473 (1988)Google Scholar
  47. 47.
    Kloeden, P.E., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1999)zbMATHGoogle Scholar
  48. 48.
    Kolmogorov, A.N.: Grundbegriffe der Warscheinlichkeitsrechnung. Springer, Berlin (1933)Google Scholar
  49. 49.
    Le Doussal, P., Machta, J.: Annealed versus quenched diffusion coefficient in random media. Phys. Rev. B 40(12), 9427–9430 (1989)Google Scholar
  50. 50.
    Lumley, J.L.: The mathematical nature of the problem of relating Lagrangian and Eulerian statistical functions in turbulence. In: Mécanique de la Turbulence. Coll. Intern. du CNRS à Marseille (Ed. CNRS, Paris, 1962), pp. 17–26Google Scholar
  51. 51.
    Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep. 14, 237–574 (1999)MathSciNetGoogle Scholar
  52. 52.
    Majumdar, S.N.: Persistence of a particle in the Matheron–de Marsily velocity field. Phys. Rev. E 68, 050101(R) (2003)Google Scholar
  53. 53.
    Matheron, G., de Marsily, G.: Is transport in porous media always diffusive? Water Resour. Res. 16, 901–917 (1980)Google Scholar
  54. 54.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. MIT Press, Cambridge (1975)Google Scholar
  55. 55.
    O’Malley, D., Cushman, J.H.: A renormalization group classification of nonstationary and/or infinite second moment diffusive processes. J. Stat. Phys. 146(5), 989–1000 (2012)MathSciNetzbMATHGoogle Scholar
  56. 56.
    O’Malley, D., Cushman, J.H.: Two scale renormalization group classification of diffusive processes. Phys. Rev. E 86(1), 011126 (2012)Google Scholar
  57. 57.
    Papoulis, A., Pillai, S. U.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, Singapore (2009)Google Scholar
  58. 58.
    Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1885)Google Scholar
  59. 59.
    Port, S.C., Stone, C.J.: Random measures and their application to motion in an incompressible fluid. J. Appl. Prob. 13, 498–506 (1976)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Reuss, J.-D., Misguish, J.H.: Low frequency percolation scaling for particle diffusion in electrostatic turbulence. Phys. Rev. E 54(2), 1857–1869 (1996)Google Scholar
  61. 61.
    Ross, K., Attinger, S.: Temporal behaviour of a solute cloud in a fractal heterogeneous porous medium at different scales. Geophys. Res. Abstr. 12, EGU2010-10921-2 (2010)Google Scholar
  62. 62.
    Russo, D.: On the velocity covariance and transport modeling in heterogeneous anisotropic porous formations. Water Resour. Res. 31(1), 129–137 (1995)Google Scholar
  63. 63.
    Russo, D.: A note on ergodic transport of a passive solute in partially saturated porous formations. Water Resour. Res. 32(12), 3623–3628 (1996)Google Scholar
  64. 64.
    Saffman, P.G.: Application of the Wiener-Hermite expansion to the diffusion of a passive scalar in a homogeneous turbulent flow. Phys. Fluids 12(9), 1786–1798 (1969)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Scheidegger, A.E.: Statistical hydrodynamics in porous media. J. Appl. Phys. 25(8), 994–1001 (1954)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Scheidegger, A.E.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961)Google Scholar
  67. 67.
    Schwarze, H., Jaekel, U., Vereecken, H.: Estimation of macrodispersivity by different approximation methods for flow and transport in randomly heterogeneous media. Transp. Porous Media 43, 265–287 (2001)Google Scholar
  68. 68.
    Shapiro, A.M., Cvetkovic, V.D.: Stochastic analysis of solute travel time in heterogeneous Porous media. Water Resour. Res. 24(10), 1711–1718 (1988)Google Scholar
  69. 69.
    Suciu, N.: Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. Phys. Rev. E 81, 056301 (2010)Google Scholar
  70. 70.
    Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water Resour. 69, 114–133 (2014)Google Scholar
  71. 71.
    Suciu, N., Vamoş, C.: Comment on “Nonstationary flow and nonergodic transport in random porous media” by G. Darvini and P. Salandin. Water Resour. Res. 43, W12601 (2007)Google Scholar
  72. 72.
    Suciu, N., Vamoş, C.: Ergodic estimations of upscaled coefficients for diffusion in random velocity fields. In: L’Ecuyér, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 617–626. Springer, Berlin (2009)Google Scholar
  73. 73.
    Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409 (2006)zbMATHGoogle Scholar
  74. 74.
    Suciu, N., Vamoş, C., Eberhard, J.: Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour. Res. 42, W11504 (2006)Google Scholar
  75. 75.
    Suciu, N., Vamos, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Memory effects induced by dependence on initial conditions and ergodicity of transport in heterogeneous media. Water Resour. Res. 44, W08501 (2008)zbMATHGoogle Scholar
  76. 76.
    Suciu, N., Vamos, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Ito equation model for dispersion of solutes in heterogeneous media. Rev. Anal. Num. Theor. Approx. 37, 221–238 (2008)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Suciu, N., Vamos, C., Radu, F.A., Vereecken, H., Knabner, P.: Persistent memory of diffusing particles. Phys. Rev. E 80, 061134 (2009)Google Scholar
  78. 78.
    Suciu, N., Attinger, S., Radu, F.A., Vamoş, C., Vanderborght, J., Vereecken, H., Knabner, P.: Solute transport in aquifers with evolving scale heterogeneity. Print No. 346, Mathematics Department—Friedrich-Alexander University Erlangen-Nuremberg (2011)Google Scholar
  79. 79.
    Suciu, N., Attinger, S., Radu, F.A., Vamoş, C., Vanderborght, J., Vereecken, H. Knabner, P.: Solute transport in aquifers with evolving scale heterogeneity. Analele Universitatii “Ovidius” Constanta-Seria Matematica 23(3), 167–186 (2015)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Suciu, N., Schüler, L., Attinger, S., Knabner, P.: Towards a filtered density function approach for reactive transport in groundwater. Adv. Water Resour. 90, 83–98 (2016)Google Scholar
  81. 81.
    Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 2(20), 196–212 (1921)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Trefry, M.G., Ruan, F.P., McLaughlin, D.: Numerical simulations of preasymptotic transport in heterogeneous porous media: departures from the Gaussian limit. Water Resour. Res. 39(3), 1063 (2003)Google Scholar
  83. 83.
    Vanderborght, J.: Concentration variance and spatial covariance in second order stationary heterogeneous conductivity fields. Water Resour. Res. 37(7), 1893–1912 (2001)Google Scholar
  84. 84.
    Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results. Springer, New York (1987)zbMATHGoogle Scholar
  85. 85.
    Zirbel, C.L.: Lagrangian observations of homogeneous random environments. Adv. Appl. Prob. 33, 810–835 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolae Suciu
    • 1
    • 2
  1. 1.Department of MathematicsFriedrich-Alexander University of Erlangen-NürnbergErlangenGermany
  2. 2.Tiberiu Popoviciu Institute of Numerical AnalysisCluj-Napoca Branch of the Romanian AcademyCluj-NapocaRomania

Personalised recommendations