Advertisement

Polar Topographic Derivatives for 3D Face Recognition: Application to Internet of Things Security

  • Farshid HajatiEmail author
  • Ali Cheraghian
  • Omid Ameri Sianaki
  • Behnam Zeinali
  • Soheila Gheisari
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)

Abstract

We propose Polar Topographic Derivatives (PTD) to fuse the shape and texture information of a facial surface for 3D face recognition. Polar Average Absolute Deviations (PAADs) of the Gabor topography maps are extracted as features. High-order polar derivative patterns are obtained by encoding texture variations in a polar neighborhood. By using the and Bosphorus 3D face database, our method shows that it is robust to expression and pose variations comparing to existing state-of-the-art benchmark approaches.

References

  1. 1.
    Hajati, F., Tavakolian, M., Gheisari, S., Gao, Y., Mian, A.S.: Dynamic texture comparison using derivative sparse representation: application to video-based face recognition. IEEE Trans. Hum.-Mach. Syst. 47(6), 970–982 (2017)CrossRefGoogle Scholar
  2. 2.
    Hajati, F., Cheraghian, A., Gheisari, S., Gao, Y., Mian, A.S.: Surface geodesic pattern for 3D deformable texture matching. Pattern Recognit. 62, 21–32 (2017)CrossRefGoogle Scholar
  3. 3.
    Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2d and 3d face recognition: a survey. Pattern Recognit. Lett. 28(14), 1885–1906 (2007)CrossRefGoogle Scholar
  4. 4.
    Chang, K.I., Bowyer, K.W., Flynn, P.J.: Face recognition using 2d and 3d facial data. In: ACM Workshop on Multimodal User Authentication, pp. 25–32 (2003)Google Scholar
  5. 5.
    Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches and challenges in 3d and multi-modal 3d + 2d face recognition. Comput. Vis. Image Underst. 101(1), 1–15 (2006)CrossRefGoogle Scholar
  6. 6.
    Smeets, D., Keustermans, J., Vandermeulen, D., Suetens, P.: meshsift: Local surface features for 3d face recognition under expression variations and partial data. Comput. Vis. Image Underst. 117(2), 158–169 (2013)CrossRefGoogle Scholar
  7. 7.
    Alyuz, N., Gokberk, B., Akarun, L.: Regional registration for expression resistant 3-d face recognition. IEEE Trans Forensics Secur. 5(3), 425–440 (2010)CrossRefGoogle Scholar
  8. 8.
    Hajati, F., Raie, A.A., Gao, Y.: 2.5d face recognition using patch geodesic moments. Pattern Recognit. 45(3), 969–982 (2012)CrossRefGoogle Scholar
  9. 9.
    Lee, T.: Image representation using 2d gabor wavelets. IEEE Trans Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)CrossRefGoogle Scholar
  10. 10.
    Malassiotis, S., Strintzis, M.G.: Robust face recognition using 2d and 3d data: pose and illumination compensation. Pattern Recognit. 38(12), 2537–2548 (2005)CrossRefGoogle Scholar
  11. 11.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Three-dimensional face recognition. Int. J. Comput. Vis. 64(1), 5–30 (2005)CrossRefGoogle Scholar
  12. 12.
    Mian, A.S., Bennamoun, M., Owens, R.: An efficient multimodal 2d–3d hybrid approach to automatic face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1927–1943 (2007)CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Gao, W., Chen, X., Zhao, D.: Learning informative features for spatial histogram-based object detection. In: Proceedings of the International Conference on Neural Networks, vol. 3, pp. 1806–1811 (2005)Google Scholar
  14. 14.
    Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., Akarun, L.: Biometrics and identity management. Bosphorus Database for 3D Face Analysis, pp. 47–56 (2008)Google Scholar
  15. 15.
    Alyüz, N., Gökberk, B., Dibeklioğlu, H., Savran, A., Salah, A., Akarun, L., Sankur, B.: Biometrics and identity management. In: Biometrics and Identity Management, pp. 57–66. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Alyüz, N., Gökberk, B., Akarun, L.: A 3d face recognition system for expression and occlusion invariance. In: Proceedings of the IEEE Second International Conference on Biometrics Theory, Applications and Systems, pp. 1–7 (2008)Google Scholar
  17. 17.
    Dibeklioğlu, H., Gökberk, B., Akarun, L.: Nasal region-based 3d face recognition under pose and expression variations. In: Proceedings of the Third International Conference on Advances in Biometrics, vol. 5558, pp. 309–318 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Farshid Hajati
    • 1
    Email author
  • Ali Cheraghian
    • 2
  • Omid Ameri Sianaki
    • 1
  • Behnam Zeinali
    • 3
  • Soheila Gheisari
    • 4
  1. 1.College of Engineering and ScienceVictoria University SydneySydneyAustralia
  2. 2.College of Engineering and Computer ScienceThe Australian National UniversityCanberraAustralia
  3. 3.Electrical Engineering DepartmentIran University of Science and TechnologyTehranIran
  4. 4.Faculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoAustralia

Personalised recommendations