Advertisement

Predictive Analytics and Deep Learning Techniques in Electronic Medical Records: Recent Advancements and Future Direction

  • Belal AlsinglawiEmail author
  • Omar Mubin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)

Abstract

The demands on medical services are increasing rapidly in the global context. Therefore, handling beds availability, identifying and managing the length of stay (LOS) is creating persistent needs for the physicians, nurses, clinicians, hospital management, and caregivers in the public hospital admissions and the private hospital admissions. Health analytics provides unprecedented ways to predict trends, patients’ future outcomes, knowledge discovery, and improving the decision making in the clinical settings. This paper reviews the state-of-the-art machine learning, deep learning techniques and the related work in relation to the length of stay common hospital admissions. Research trends and future direction for the forecasting LOS in medical admissions are discussed in this paper.

References

  1. 1.
    Tang, F., Xiao, C., Wang, F., Zhou, J.: Predictive modeling in urgent care: a comparative study of machine learning approaches. JAMIA Open (2018)Google Scholar
  2. 2.
    What is an electronic health record (HER) (2018). https://www.healthit.gov/faq/what-electronic-health-record-ehr
  3. 3.
    Gunasekar, S., Ho, J.C., Ghosh, J., Kreml, S., Kho, A.N., Denny, J.C., Malin, B.A., Sun, J.: Phenotyping using structured collective matrix factorization of multisource ehr data. arXiv preprint arXiv:1609.04466 (2016)
  4. 4.
    Liu, V., Kipnis, P., Gould, M.K., Escobar, G.J.: Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Medical care, pp. 739–744 (2010)Google Scholar
  5. 5.
    Hosseininejad, S.M., Aminiahidashti, H., Pashaei, S.M., Khatir, I.G., Montazer, S.H., Bozorgi, F., Mahmoudi, F.: Determinants of prolonged length of stay in the emergency department; a cross-sectional study. Emergency 5(1) (2017)Google Scholar
  6. 6.
    Hachesu, P.R., Ahmadi, M., Alizadeh, S., Sadoughi, F.: Use of data mining techniques to determine and predict length of stay of cardiac patients. Healthc. Inform. Res. 19(2), 121–129 (2013)CrossRefGoogle Scholar
  7. 7.
    Maharlou, H., Niakan Kalhori, S.R., Shahbazi, S., Ravangard, R.: Predicting length of stay in intensive care units after cardiac surgery: comparison of artificial neural networks and adaptive neuro-fuzzy system. Healthc. Inform. Res. 24(2), 109–117 (2018)CrossRefGoogle Scholar
  8. 8.
    Elbattah, M., Molloy, O.: Using machine learning to predict length of stay and discharge destination for hip-fracture patients. In: Proceedings of SAI Intelligent Systems Conference, pp. 207–217. Springer (2016)Google Scholar
  9. 9.
    Azari, A., Janeja, V.P., Levin, S.: Imbalanced learning to predict long stay emergency department patients. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 807–814. IEEE (2015)Google Scholar
  10. 10.
    Vermeulen, M.J., Guttmann, A., Stukel, T.A., Kachra, A., Sivilotti, M.L., Rowe, B.H., Dreyer, J., Bell, R., Schull, M.: Are reductions in emergency department length of stay associated with improvements in quality of care? a difference-in-differences analysis. BMJ Qual. Saf. 25(7), 489–498 (2016)CrossRefGoogle Scholar
  11. 11.
    Barak-Corren, Y., Fine, A.M., Reis, B.Y.: Early prediction model of patient hospitalization from the pediatric emergency department. Pediatrics 139(5), e20162785 (2017)Google Scholar
  12. 12.
    Carter, E.M., Potts, H.W.: Predicting length of stay from an electronic patient record system: a primary total knee replacement example. BMC Med. Inform. Decis. Making 14(1), 26 (2014)CrossRefGoogle Scholar
  13. 13.
    Zaccardi, F., Webb, D.R., Davies, M.J., Dhalwani, N.N., Gray, L.J., Chatterjee, S., Housley, G., Shaw, D., Hatton, J.W., Khunti, K.: Predicting hospital stay, mortality and readmission in people admitted for hypoglycaemia: prognostic models derivation and validation. Diabetologia 60(6), 1007–1015 (2017)CrossRefGoogle Scholar
  14. 14.
    Juma, S., Taabazuing, M.M., Montero-Odasso, M.: Clinical frailty scale in an acute medicine unit: a simple tool that predicts length of stay. Can. Geriatr. J. 19(2), 34 (2016)CrossRefGoogle Scholar
  15. 15.
    Magalhães, T., Lopes, S., Gomes, J., Seixo, F.: The predictive factors on extended hospital length of stay in patients with ami: laboratory and administrative data. J. Med. Syst. 40(1), 2 (2016)Google Scholar
  16. 16.
    Cereda, E., Klersy, C., Pedrolli, C., Cameletti, B., Bonardi, C., Quarleri, L., Cappello, S., Bonoldi, A., Bonadeo, E., Caccialanza, R.: The geriatric nutritional risk index predicts hospital length of stay and in-hospital weight loss in elderly patients. Clin. Nutr. 34(1), 74–78 (2015)CrossRefGoogle Scholar
  17. 17.
    Combes, C., Kadri, F., Chaabane, S.: Predicting hospital length of stay using regression models: application to emergency department. In: 10ème Conférence Francophone de Modélisation, Optimisation et Simulation-MOSIM’14 (2014)Google Scholar
  18. 18.
    Chuang, M.T., Hu, Y.H., Lo, C.L.: Predicting the prolonged length of stay of general surgery patients: a supervised learning approach. Int. Trans. Oper. Res. 25(1), 75–90 (2018)Google Scholar
  19. 19.
    Salah, H.: Predicting Inpatient Length of Stay in Western New York Health Service Area Using Machine Learning Algorithms. Ph.D. thesis, State University of New York at Binghamton (2017)Google Scholar
  20. 20.
    Muhlestein, W.E., Akagi, D.S., Davies, J.M., Chambless, L.B.: Predicting inpatient length of stay after brain tumor surgery: developing machine learning ensembles to improve predictive performance. Neurosurgery (2018)Google Scholar
  21. 21.
    Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141) (2018)Google Scholar
  22. 22.
    Shickel, B., Tighe, P., Bihorac, A., Rashidi, P.: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. arXiv preprint arXiv:1706.03446 (2017)
  23. 23.
    He, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2018)Google Scholar
  24. 24.
    Harutyunyan, H., Khachatrian, H., Kale, D.C., Galstyan, A.: Multitask learning and benchmarking with clinical time series data. arXiv preprint arXiv:1703.07771 (2017)
  25. 25.
    Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus, J., Sun, M., et al.: Scalable and accurate deep learning with electronic health records. NPJ Digital Med. 1(1), 18 (2018)Google Scholar
  26. 26.
    Dimitrov, D.V.: Medical internet of things and big data in healthcare. Healthc. Inform. Res. 22(3), 156–163 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Western Sydney UniversitySydneyAustralia

Personalised recommendations