Big Data Analytics for Traceability in Food Supply Chain

  • Alessandra AmatoEmail author
  • Giovanni Cozzolino
  • Vincenzo Moscato
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)


The amount of socio-economic data generated every day has grown dramatically in recent years thanks to the widespread use of the internet connection and the increase in the availability of electronic devices. This leads to the production of a huge amount of digital traces of various kinds: photos, emails, call logs, information on purchases made, financial transactions, social interactions network. Big Data are data characterized by volume, speed and variety: they are extracted and processed at high speed and collected in large datasets, which are made up of data from the most varied sources and therefore not only from structured data. Data collection is typically difficult and expensive, both in terms of time and money; instead, the enthusiasm that surrounds Big Data is due precisely to the perception of great ease and speed of access to a large amount of data at low cost. Thence, in this work we show the application of a system architecture aiming to use of Big Data technologies for traceability in food supply chain domain.


  1. 1.
    Cilardo, A., Durante, P., Lofiego, C., Mazzeo, A.: Early prediction of hardware complexity in HLL-to-HDL translation. In: 2010 International Conference on Field Programmable Logic and Applications (FPL), pp. 483–488. IEEE (2010)Google Scholar
  2. 2.
    Cilardo, A.: Exploring the potential of threshold logic for cryptography-related operations. IEEE Trans. Comput. 60(4), 452–462 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Amato, F., Moscato, V., Picariello, A., Colace, F., De Santo, M., Schreiber, F.A., Tanca, L.: Big data meets digital cultural heritage: design and implementation of scrabs, a smart context-aware browsing assistant for cultural environments. J. Comput. Cult. Herit. (JOCCH) 10(1), 6 (2017)Google Scholar
  4. 4.
    Amato, F., Mazzeo, A., Penta, A., Picariello, A.: Building RDF ontologies from semi-structured legal documents. In: 2008 International Conference on Complex, Intelligent and Software Intensive Systems, CISIS 2008, pp. 997–1002. IEEE (2008)Google Scholar
  5. 5.
    Philip Chen, C.L., Zhang, C.-Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)CrossRefGoogle Scholar
  6. 6.
    Cugola, G., Margara, A.: Complex event processing with T-REX. J. Syst. Softw. 85(8), 1709–1728 (2012)CrossRefGoogle Scholar
  7. 7.
    Panigati, E., Schreiber, F.A., Zaniolo, C.: Data streams and data stream management systems and languages. In: Colace, F., De Santo, M., Moscato, V., Picariello, A., Schreiber, F., Tanca, L. (eds.) Data Management in Pervasive Systems, pp. 93–111. Springer, Cham (2015)CrossRefGoogle Scholar
  8. 8.
    Marelli, M., Fortunato, M., Camplani, R., Schreiber, F.A., Rota, G.: Perla: a language and middleware architecture for data management and integration in pervasive information systems. IEEE Trans. Software Eng. 38, 478–496 (2012)CrossRefGoogle Scholar
  9. 9.
    Colace, F., De Santo, M., Greco, L., Moscato, V., Picariello, A.: Probabilistic approaches for sentiment analysis: latent dirichlet allocation for ontology building and sentiment extraction. In: Pedrycz, W., Chen, S.M. (eds.) Sentiment Analysis and Ontology Engineering, pp. 75–91. Springer, Cham (2016)CrossRefGoogle Scholar
  10. 10.
    Bolchini, C., Quintarelli, E., Tanca, L.: Carve: context-aware automatic view definition over relational databases. Inf. Syst. 38(1), 45–67 (2013)CrossRefGoogle Scholar
  11. 11.
    Dong, X.L., Srivastava, D.: Big data integration. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 1245–1248. IEEE (2013)Google Scholar
  12. 12.
    Amato, F., Castiglione, A., Moscato, V., Picariello, A., Sperlí, G.: Multimedia summarization using social media content. Multimed. Tools Appl. pp. 1–25 (2018)Google Scholar
  13. 13.
    Amato, F., Castiglione, A., De Santo, A., Moscato, V., Picariello, A., Persia, F., Sperlí, G.: Recognizing human behaviours in online social networks. Comput. Secur. 74, 355–370 (2018)CrossRefGoogle Scholar
  14. 14.
    Amato, F., Moscato, V., Picariello, A., Sperlí, G.: Extreme events management using multimedia social networks. Future Gener. Comput. Syst. 94, 444–452 (2019)CrossRefGoogle Scholar
  15. 15.
    Bartolini, I., Patella, M.: Multimedia queries in digital libraries. In: Colace, F., De Santo, M., Moscato, V., Picariello, A., Schreiber, F., Tanca, L. (eds.) Data Management in Pervasive Systems, pp. 311–325. Springer, Cham (2015)CrossRefGoogle Scholar
  16. 16.
    Colace, F., De Santo, M., Greco, L., Moscato, V., Picariello, A.: A collaborative user-centered framework for recommending items in online social networks. Comput. Hum. Behav. 51, 694–704 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alessandra Amato
    • 1
    Email author
  • Giovanni Cozzolino
    • 1
  • Vincenzo Moscato
    • 1
  1. 1.University of Naples Federico IINaplesItaly

Personalised recommendations