A Smart Compact Traffic Network Vision Based on Wave Representation

  • Walter BalzanoEmail author
  • Aniello Murano
  • Loredana Sorrentino
  • Silvia Stranieri
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)


VANET constitutes a huge research area due to its potential in traffic management and road safety. In this paper, we propose a novel, smart, and compact representation of vehicular networks. Starting from the standard graph representation, we extract a signal assigning a congestion factor to each vehicle, so that highly jammed traffic areas can be immediately detected by identifying the highest peaks of the wave. The way the signal is built provides useful information about vehicles distribution throughout the network, producing as result a simple but very meaningful wave characterizing the corresponding VANET.


VANET Wave representation 


  1. 1.
    Statista: IoT connected devices installed base worldwide from 2015 to 2025.
  2. 2.
    Statista: Most popular mapping apps in the U.S. 2018, by audience.
  3. 3.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)CrossRefGoogle Scholar
  4. 4.
    Al-Sultan, S., Al-Doori, M., Al-Bayatti, A., Zedan, H.: A comprehensive survey on vehicular ad hoc network. J. Netw. Comput. Appl. 37, 380–392 (2014)CrossRefGoogle Scholar
  5. 5.
    Balzano, W., Barbieri, V., Riccardi, G.: Smart priority park framework based on DDGP3. In: WAINA 2018. IEEE (2018)Google Scholar
  6. 6.
    Balzano, W., Murano, A., Stranieri, S.: Logic-based clustering approach for management and improvement of VANETs. J. High Speed Netw. 23(3), 225–236 (2017)CrossRefGoogle Scholar
  7. 7.
    Balzano, W., Murano, A., Vitale, F.: V2V-EN–vehicle-2-vehicle elastic network. Procedia Comput. Sci. 98, 497–502 (2016)CrossRefGoogle Scholar
  8. 8.
    Balzano, W., Murano, A., Vitale, F.: WiFACT–wireless fingerprinting automated continuous training. In: Proceedings of WAINA 2016. IEEE Computer Society (2016)Google Scholar
  9. 9.
    Balzano, W., Murano, A., Vitale, F.: EENET: energy efficient detection of network changes using a wireless sensor network. In: Proceedings of CISIS 2017. Springer (2017)Google Scholar
  10. 10.
    Balzano, W., Murano, A., Vitale, F.: Hypaco–a new model for hybrid paths compression of geodetic tracks. Int. J. Grid Util. Comput. (2017)Google Scholar
  11. 11.
    Balzano, W., Murano, A., Vitale, F.: SNOT-WiFi: sensor network-optimized training for wireless fingerprinting. J. High Speed Netw. 24(1), 79–87 (2018)CrossRefGoogle Scholar
  12. 12.
    Balzano, W., Del Sorbo, M.R., Murano, A., Stranieri, S.: A logic-based clustering approach for cooperative traffic control systems. In: Proceedings of 3PGCIC 2016. Springer (2016)Google Scholar
  13. 13.
    Balzano, W., Del Sorbo, M.R., Stranieri, S.: A logic framework for C2C network management. In: Proceedings of WAINA 2016. IEEE Computer Society (2016)Google Scholar
  14. 14.
    Balzano, W., Vitale, F.: DiG-Park: a smart parking availability searching method using V2V/V2I and DGP-class problem. In: Proceedings of WAINA 2017. IEEE Computer Society (2017)Google Scholar
  15. 15.
    Boukerche, A., Oliveira, H., Nakamura, E.F., Loureiro, A.: Vehicular ad hoc networks: a new challenge for localization-based systems. Comput. Commun. 31(12), 2838–2849 (2008)CrossRefGoogle Scholar
  16. 16.
    Cunha, F., Villas, L., Boukerche, A., Maia, G., Viana, A., Mini, R., Loureiro, A.: Data communication in VANETs: protocols, applications and challenges. Ad Hoc Netw. 44, 90–103 (2016)CrossRefGoogle Scholar
  17. 17.
    Li, F., Wang, Y.: Routing in vehicular ad hoc networks: a survey. IEEE Veh. Technol. Mag. 2(2), 12–22 (2007)CrossRefGoogle Scholar
  18. 18.
    Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., Mauve, M.: A routing strategy for vehicular ad hoc networks in city environments. In: Intelligent Vehicles Symposium. IEEE (2003)Google Scholar
  19. 19.
    Naumov, V., Gross, T.R.: Connectivity-Aware Routing (CAR) in vehicular ad-hoc networks. In: Proceedings of INFOCOM 2007. IEEE (2007)Google Scholar
  20. 20.
    Parameswaran, A.T., Husain, M.I., Upadhyaya, S., et al.: Is RSSI a reliable parameter in sensor localization algorithms: an experimental study. In: Proceedings of F2DA 2009. IEEE (2009)Google Scholar
  21. 21.
    Raghavendra, C.S., Sivalingam, K.M., Znati, T.: Wireless Sensor Networks. Springer, London (2006)zbMATHGoogle Scholar
  22. 22.
    Saha, A.K., Johnson, D.B.: Modeling mobility for vehicular ad hoc networks. In: Proceedings of VANET 2004. ACM (2004)Google Scholar
  23. 23.
    Singh, A., Kumar, M., Rishi, R., Madan, D.K.: A relative study of MANET and VANET: its applications, broadcasting approaches and challenging issues. In: Proceedings of CCSIT 2011. Springer (2011)Google Scholar
  24. 24.
    Vodopivec, S., Bešter, J., Kos, A.: A survey on clustering algorithms for vehicular ad-hoc networks. In: Proceedings of TSP 2012. IEEE (2012)Google Scholar
  25. 25.
    Zeadally, S., Hunt, R., Chen, Y., Irwin, A., Hassan, A.: Vehicular Ad Hoc Networks (VANETs): status, results, and challenges. Telecommun. Syst. 50(4), 217–241 (2012)CrossRefGoogle Scholar
  26. 26.
    Zhang, Z., Boukerche, A., Pazzi, R.: A novel multi-hop clustering scheme for vehicular ad-hoc networks. In: Proceedings of MOBIWAC 2011. ACM (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Walter Balzano
    • 1
    Email author
  • Aniello Murano
    • 1
  • Loredana Sorrentino
    • 1
  • Silvia Stranieri
    • 1
  1. 1.Naples University, Federico IINaplesItaly

Personalised recommendations