Advertisement

Enhanced Robustness Strategy for IoT in Smart Cities Based on Data Driven Approach

  • Talha Naeem Qureshi
  • Nadeem JavaidEmail author
  • Suhail Ashfaq Butt
  • Wahab Khan
  • Sabir Ali Changazi
  • Muhammad Mudassar Iqbal
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)

Abstract

Numerous fields have wide range of applications regarding Internet of Things (IoT) specially smart cities. Due to increasing day to day growth in number of applications, there is exponential rise in requirement of IoT devices. IoT network is becoming complex persistently which brings the significant challenge to the robustness of network topology. IoT is the backbone of smart cities due to inter connecting wide range of devices and converting a conventional city to smart city. To improve network topology robustness against targeted, malicious and intentional attacks have become a critical issue. To deal with the problem in this article, Enhanced Angle Sum Operation (EASO) ROSE is presented. Proposed scheme improves the robustness of network topology without effecting node degree distribution and scale-free property. Topology robustness is achieved by degree difference and angle sum operations. Extensive simulation results verify that our proposed scheme efficiently generate scale-free typologies for IoT in smart cities and significantly improve topology robustness against malicious and targeted attacks.

Keywords

Topology robustness Data driven Internet of Things Scale-free networks Malicious attacks 

References

  1. 1.
    Collier, S.E.: The emerging enernet: convergence of the smart grid with the internet of things. In: 2015 IEEE Rural Electric Power Conference (REPC) (2015)Google Scholar
  2. 2.
    Stankovic, J.A.: Research directions for the Internet of Things. IEEE Internet Things J. 1(1), 3–9 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Javaid, N., Sher, A., Nasir, H., Guizani, N.: Intelligence in IoT based 5G networks: opportunities and challenges. IEEE Commun. Mag. 56(10), 94–100 (2018)CrossRefGoogle Scholar
  4. 4.
    Naz, A., Javaid, N., Iqbal, M.M., Ali, M., Imran, M., Khan, Z.A.: TBEENISH: threshold balanced energy efficient network integrated super heterogeneous protocol for WSNs. In: 32nd International Conference on Advanced Information Networking and Applications (IEEE AINA) (2018)Google Scholar
  5. 5.
    Butt, S.A., Bakar, K.A., Javaid, N., Gharaei, N., Ishmanov, F.H., Afzal, M.K., Mahmood, M.K., Mujahid, M.A.: Exploiting layered multi-path routing protocols to avoid void hole regions for reliable data delivery and efficient energy management for IoT-enabled underwater WSNs. Sensors 19, 510 (2019)CrossRefGoogle Scholar
  6. 6.
    Mateen, A., Awais, M., Javaid, N., Ishmanov, F., Afzal, M.K., Kazmi, S.: Geographic and opportunistic recovery with depth and power transmission adjustment for energy-efficiency and void hole alleviation in UWSNs. Sensors 19(3), 709 (2019)CrossRefGoogle Scholar
  7. 7.
    Hussain, R., Bouk, S.H., Javaid, N., Khan, A., Lee, J.: Realization of VANET-based clouds services through named data networking. IEEE Commun. Mag. 58, 168–175 (2018)CrossRefGoogle Scholar
  8. 8.
    Sher, A., Khan, A., Javaid, N., Ahmed, S.H., Aalsalem, M., Khan, W.Z.: Void hole avoidance for reliable data delivery in IoT enabled underwater wireless sensor networks. Sensors 18, 3271 (2018)CrossRefGoogle Scholar
  9. 9.
    Qureshi, T.N., Javaid, N.: Enhanced adaptive geographic opportunistic routing with interference avoidance assisted with mobile sinks for underwater wireless sensor network. In: International Conference on Frontiers of Information Technology (2018)Google Scholar
  10. 10.
    Qureshi, T.N., Javaid, N., Khan, A.H., Iqbal, A., Akhtar, E., Ishfaq, M.: Balanced energy efficient network integrated super heterogenous protocol for wireless sensor networks. In: International Workshop on Body Area Sensor Networks (BASNet) (2013)Google Scholar
  11. 11.
    Naz, A., Javaid, N., Qureshi, T.N., Imran, M., Ali, M., Khan, Z.A.: EDHBPSO: enhanced differential harmony binary particle swarm optimization for demand side management in smart grid. In: 32nd International Conference on Advanced Information Networking and Applications (IEEE AINA) (2018)Google Scholar
  12. 12.
    Qureshi, T.N., Javaid, N., Naz, A., Ahmad, W., Imran, M.: A novel meta-heuristic hybrid enhanced differential harmony wind driven (EDHWDO) optimization technique for demand side management in smart grid. In: 32nd International Conference on Advanced Information Networking and Applications (IEEE AINA) (2018)Google Scholar
  13. 13.
    Qiu, T., Liu, J., Si, W., Han, M., Ning, H., Atiquzzaman, M.: A data-driven robustness algorithm for the internet of things in smart cities. IEEE Commun. Mag. (2017)Google Scholar
  14. 14.
    Wu, J., et al.: Spectral measure of structural robustness in complex networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41(6), 1244–1252 (2011)CrossRefGoogle Scholar
  15. 15.
    Qiu, T., Zhao, A., Xia, F., Si, W., Do, W.: ROSE: robustness strategy for scale-free wireless sensor networks. IEEE/ACM Trans. Networking 55, 18–23 (2017)Google Scholar
  16. 16.
    Li, R.H., Yu, J.X., Huang, X., Cheng, H., Shang, Z.: Measuring robustness of complex networks under MVC attack. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, New York, NY, USA, pp. 1512–1516, October/November 2012Google Scholar
  17. 17.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schneider, C.M., Moreira, A.A., Andrade Jr., J.S., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. Proc. Nat. Acad. Sci. USA 108(10), 3838–3841 (2011)CrossRefGoogle Scholar
  19. 19.
    Buesser, P., Daolio, F., Tomassini, M.: Optimizing the robustness of scale-free networks with simulated annealing. In: Proceedings of the 10th International Conference on Adaptive and Natural Computing Algorithms (ICANNGA), Ljubljana, Slovenia, pp. 167–176, April 2011Google Scholar
  20. 20.
    Liu, L., Qi, X., Xue, J., Xie, M.: A topology construct and control model with small-world and scale-free concepts for heterogeneous sensor networks. Int. J. Distrib. Sens. Netw. 10(3), 1–8 (2014). Art. no. 374251Google Scholar
  21. 21.
    Xiao, W., Lin, L., Chen, G.: Vertex-degree sequences in complex networks: new characteristics and applications. Physica A 437(11), 437–441 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Frank, H., Frisch, I.T.: Analysis and design of survivable networks. IEEE Trans. Commun. Tech. 18, 501–519 (1970)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2005)CrossRefGoogle Scholar
  24. 24.
    Sydney, A., Scoglio, C., Youssef, M., Schumm, P.: Characterizing the robustness of complex networks. IJITST 2, 291–320 (2010)CrossRefGoogle Scholar
  25. 25.
    Fiedler, M.: Algebraic connectivity of graphs. Czech Math. J. 23, 298–305 (1973)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109–056123 (2002)CrossRefGoogle Scholar
  27. 27.
    Zhou, M., Liu, J.: A memetic algorithm for enhancing the robustness of scale-free networks against malicious attacks. Phys. A Statist. Mech. Appl. 410, 131–143 (2014)CrossRefGoogle Scholar
  28. 28.
    Prendeville, S., Cherim, E., Bocken, N.: Circular cities: mapping six cities in transition. Environ. Innov. Societal Transitions 26, 171–194 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Talha Naeem Qureshi
    • 1
  • Nadeem Javaid
    • 1
    Email author
  • Suhail Ashfaq Butt
    • 2
  • Wahab Khan
    • 3
  • Sabir Ali Changazi
    • 4
  • Muhammad Mudassar Iqbal
    • 4
  1. 1.COMSATS University IslamabadIslamabadPakistan
  2. 2.Division of Science and TechnologyUniversity of EducationLahorePakistan
  3. 3.Beijing Institute of TechnologyBeijingChina
  4. 4.Riphah International UniversityIslamabadPakistan

Personalised recommendations