Advertisement

Multi-objective Optimal Power Flow Using Improved Multi-objective Multi-verse Algorithm

  • Muhammad Abdullah
  • Nadeem JavaidEmail author
  • Annas Chand
  • Zain Ahmad Khan
  • Muhammad Waqas
  • Zeeshan Abbas
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)

Abstract

This study proposes an improved multi-objective multi-verse optimization (IMOMVO) algorithm for solving multi-objective optimal power flow (MOOPF) problem with uncertain renewable energy sources (RESs). Cross and self-pollination steps of flower pollination algorithm (FPA) along with crowding distance and non-dominating sorting approach is incorporated with the basic MOMVO algorithm to further enhance the exploration, exploitation and for well-distributed Pareto-optimal solution. To confirm the effectiveness of the proposed IMOMVO algorithm, modified IEEE 30-bus system with security constraints is utilized by considering the total generation cost and active power loss minimization. The simulation results obtained with IMOMVO is compared with MOMVO, NSGA-II, and MOPSO, which reveals the capability of the proposed IMOMVO in terms of solution optimality and distribution.

References

  1. 1.
    Abdi, H., Beigvand, S.D., La Scala, M.: A review of optimal power flow studies applied to smart grids and microgrids. Renew. Sustain. Energy Rev. 71, 742–766 (2017)CrossRefGoogle Scholar
  2. 2.
    Attia, A.-F., El Sehiemy, R.A., Hasanien, H.M.: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. Int. J. Electr. Power Energy Syst. 99, 331–343 (2018)CrossRefGoogle Scholar
  3. 3.
    Bai, W., Eke, I., Lee, K.Y.: An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem. Control Eng. Pract. 61, 163–172 (2017)CrossRefGoogle Scholar
  4. 4.
    Branke, J., Kaußler, T., Schmeck, H.: Guidance in evolutionary multi-objective optimization. Adv. Eng. Softw. 32(6), 499–507 (2001)CrossRefGoogle Scholar
  5. 5.
    Tan, K.C.: Advances in evolutionary multi-objective optimization. In: Soft Computing Applications. Springer, Heidelberg, pp. 7–8 (2013)Google Scholar
  6. 6.
    Mirjalili, S., et al.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)CrossRefGoogle Scholar
  7. 7.
    Javaid, N., et al.: Energy efficient integration of renewable energy sources in the smart grid for demand side management. IEEE Access 6, 77077–77096 (2018)CrossRefGoogle Scholar
  8. 8.
    Javaid, N., et al.: An intelligent load management system with renewable energy integration for smart homes. IEEE Access 5, 13587–13600 (2017)CrossRefGoogle Scholar
  9. 9.
    Khan, M., et al.: Game theoretical demand response management and short-term load forecasting by knowledge based systems on the basis of priority index. Electronics 7(12), 431 (2018)CrossRefGoogle Scholar
  10. 10.
    Awais, M., et al.: Towards effective and efficient energy management of single home and a smart community exploiting heuristic optimization algorithms with critical peak and real-time pricing tariffs in smart grids. Energies 11(11), 3125 (2018)CrossRefGoogle Scholar
  11. 11.
    Ahmad, A., et al.: An optimized home energy management system with integrated renewable energy and storage resources. Energies 10(4), 549 (2017)CrossRefGoogle Scholar
  12. 12.
    Nuaekaew, K., et al.: Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer. Expert Syst. Appl. 87, 79–89 (2017)CrossRefGoogle Scholar
  13. 13.
    Kumar, A.R., Premalatha, L.: Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization. Int. J. Electr. Power Energy Syst. 73, 393–399 (2015)CrossRefGoogle Scholar
  14. 14.
    Chen, G., et al.: Quasi-oppositional cuckoo search algorithm for multi-objective optimal power flow. IAENG Int. J. Comput. Sci. 45(2), 255–266 (2018)Google Scholar
  15. 15.
    Ghasemi, M., et al.: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy 78, 276–289 (2014)CrossRefGoogle Scholar
  16. 16.
    Abdelaziz, A.Y., Ali, E.S., Abd Elazim, S.M.: Flower pollination algorithm to solve combined economic and emission dispatch problems. Eng. Sci. Technol. Int. J. 19(2), 980–990 (2016)CrossRefGoogle Scholar
  17. 17.
    Biswas, P.P., Suganthan, P.N., Amaratunga, G.A.J.: Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 148, 1194–1207 (2017)CrossRefGoogle Scholar
  18. 18.
    Chen, C.-L., Lee, T.-Y., Jan, R.-M.: Optimal wind-thermal coordination dispatch in isolated power systems with large integration of wind capacity. Energy Convers. Manag. 47(18–19), 3456–3472 (2006)CrossRefGoogle Scholar
  19. 19.
    Wijesinghe, A., Lai, L.L.: Small hydro power plant analysis and development. In: 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). IEEE (2011)Google Scholar
  20. 20.
    Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation (CEC). IEEE (2013)Google Scholar
  21. 21.
    Reddy, S.S., Bijwe, P.R., Abhyankar, A.R.: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period. IEEE Syst. J. 9(4), 1440–1451 (2015)CrossRefGoogle Scholar
  22. 22.
    Reddy, S.S.: Optimal scheduling of thermal-wind-solar power system with storage. Renew. Energy 101, 1357–1368 (2017)CrossRefGoogle Scholar
  23. 23.
    Chang, T.P.: Investigation on frequency distribution of global radiation using different probability density functions. Int. J. Appl. Sci. Eng. 8(2), 99–107 (2010)Google Scholar
  24. 24.
    Mujere, N.: Flood frequency analysis using the Gumbel distribution. Int. J. Comput. Sci. Eng. 3(7), 2774–2778 (2011)Google Scholar
  25. 25.
    Cabus, P.: River flow prediction through rainfall runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium. Agric. Water Manag. 95(7), 859–868 (2008)CrossRefGoogle Scholar
  26. 26.
    Ghasemi, M., et al.: Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos. Energy 73, 340–353 (2014)CrossRefGoogle Scholar
  27. 27.
    Mohamed, A.A.A., et al.: Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 142, 190–206 (2017)CrossRefGoogle Scholar
  28. 28.
    Mirjalili, S., et al.: Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl.-Based Syst. 134, 50–71 (2017)CrossRefGoogle Scholar
  29. 29.
    Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)CrossRefGoogle Scholar
  30. 30.
    Yang, X.-S.: Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation. Springer, Heidelberg (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Abdullah
    • 1
  • Nadeem Javaid
    • 1
    Email author
  • Annas Chand
    • 2
  • Zain Ahmad Khan
    • 2
  • Muhammad Waqas
    • 1
  • Zeeshan Abbas
    • 1
  1. 1.COMSATS University IslamabadIslamabadPakistan
  2. 2.COMSATS University IslamabadAbbottabadPakistan

Personalised recommendations