New Developments

  • Audrius DubietisEmail author
  • Arnaud Couairon
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Emerging applications in many fields of modern ultrafast science require high-power broadband radiation and few optical cycle pulses that are generated by all-solid-state technology and by relatively simple means. This chapter gives an overview of the currently evolving research topics in SC generation that pursue power and energy scaling, and control of SC radiation. A special emphasis is given to various extracavity pulse compression and self-compression techniques which rely on spectral broadening and SC generation in bulk solid-state media, and which currently receive a great deal of revived interest.


  1. 1.
    Lu, C.-H., Tsou, Y.-J., Chen, H.-Y., Chen, B.-H., Cheng, Y.-C., Yang, S.-D., Chen, M.-C., Hsu, C.-C., Kung, A.H.: Generation of intense supercontinuum in condensed media. Optica 1, 400–406 (2014)CrossRefGoogle Scholar
  2. 2.
    Cheng, Y.-C., Lu, C.-H., Lin, Y.-Y., Kung, A.H.: Supercontinuum generation in a multi-plate medium. Opt. Express 24, 7224–7231 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    He, P., Liu, Y., Zhao, K., Teng, H., He, X., Huang, P., Huang, H., Zhong, S., Jiang, Y., Fang, S., Hou, X., Wei, Z.: High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level. Opt. Lett. 42, 474–477 (2017)Google Scholar
  4. 4.
    Budriūnas, R., Kučinskas, D., Varanavičius, A.: High-energy continuum generation in an array of thin plates pumped by tunable femtosecond IR pulses. Appl. Phys. B 123, 212 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Shank, C.V., Fork, R.L., Yen, R., Stolen, R.H., Tomlinson, W.J.: Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761–763 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    Tomlinson, W.J., Stolen, R.H., Shank, C.V.: Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1, 139–149 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    Fork, R.L., Brito Cruz, C.H., Becker, P.C., Shank, C.V.: Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987)Google Scholar
  8. 8.
    Nisoli, M., De Silvestri, S., Svelto, O.: Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Cardin, V., Thiré, N., Beaulieu, S., Wanie, V., Légaré, F., Schmidt, B.E.: 0.42 TW 2-cycle pulses at \(1.8~\upmu \)m via hollow-core fiber compression. Appl. Phys. Lett. 107, 181101 (2015)Google Scholar
  10. 10.
    Balciunas, T., Fourcade-Dutin, C., Fan, G., Witting, T., Voronin, A.A., Zheltikov, A.M., Gerome, F., Paulus, G.G., Baltuska, A., Benabid, F.: A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun. 6, 6117 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Couairon, A., Biegert, J., Hauri, C.P., Kornelis, W., Helbing, F.W., Keller, U., Mysyrowicz, A.: Self-compression of ultra-short laser pulses down to one optical cycle by filamentation. J. Mod. Opt. 53, 75–85 (2006)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Mitrofanov, A.V., Voronin, A.A., Rozhko, M.V., Sidorov-Biryukov, D.A., Fedotov, A.B., Pugžlys, A., Shumakova, V., Ališauskas, S., Baltuška, A., Zheltikov, A.M.: Self-compression of high-peak-power mid-infrared pulses in anomalously dispersive air. Optica 4, 1405–1408 (2017)CrossRefGoogle Scholar
  13. 13.
    Rolland, C., Corkum, P.B.: Compression of high-power optical pulses. J. Opt. Soc. Am. B 5, 641–647 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Mével, E., Tcherbakoff, O., Salin, F., Constant, E.: Extracavity compression technique for high-energy femtosecond pulses. J. Opt. Soc. Am. B 20, 105–108 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Seidel, M., Arisholm, G., Brons, J., Pervak, V., Pronin, O.: All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses. Opt. Express 24, 9412–9428 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Pronin, O., Seidel, M., Lücking, F., Brons, J., Fedulova, E., Trubetskov, M., Pervak, V., Apolonski, A., Udem, T., Krausz, F.: High-power multi-megahertz source of waveform-stabilized few-cycle light. Nat. Commun. 6, 6998 (2015)CrossRefGoogle Scholar
  17. 17.
    Krebs, N., Pugliesi, I., Riedle, E.: Pulse compression of ultrashort UV pulses by self-phase modulation in bulk material. Appl. Sci. 3, 153–167 (2013)CrossRefGoogle Scholar
  18. 18.
    Lanin, A.A., Voronin, A.A., Stepanov, E.A., Fedotov, A.B., Zheltikov, A.M.: Frequency-tunable sub-two-cycle 60-MW-peak-power free-space waveforms in the mid-infrared. Opt. Lett. 39, 6430–6433 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Schulte, J., Sartorius, T., Weitenberg, J., Vernaleken, A., Russbueldt, P.: Nonlinear pulse compression in a multi-pass cell. Opt. Lett. 41, 4511–4514 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Beetar, J.E., Gholam-Mirzaei, S., Chini, M.: Spectral broadening and pulse compression of a \(400~\upmu \)J, 20 W Yb:KGW laser using a multi-plate medium. Appl. Phys. Lett. 112, 051102 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Fritsch, K., Poetzlberger, M., Pervak, V., Brons, J., Pronin, O.: All-solid-state multipass spectral broadening to sub-20 fs. Opt. Lett. 43, 4643–4646 (2018)Google Scholar
  22. 22.
    Lu, C.-H., Witting, T., Husakou, A., Vrakking, M.J.J., Kung, A.H., Furch, F.J.: Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup. Opt. Express 26, 8941–8956 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Voronin, A.A., Zheltikov, A.M., Ditmire, T., Rus, B., Korn, G.: Subexawatt few-cycle light wave generation via multipetawatt pulse compression. Opt. Commun. 291, 299–303 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Farinella, D.M., Wheeler, J., Hussein, A.E., Nees, J., Stanfield, M., Beier, N., Ma, Y., Cojocaru, G., Ungureanu, R., Pittman, M., Demailly, J., Baynard, E., Fabbri, R., Masruri, M., Secareanu, R., Naziru, A., Dabu, R., Maksimchuk, A., Krushelnick, K., Ros, D., Mourou, G., Tajima, T., Dollar, F.: Focusability of laser pulses at petawatt transport intensities in thin film compression. J. Opt. Soc. Am. B 36, A28–A32 (2019)CrossRefGoogle Scholar
  25. 25.
    Hache, F., Zéboulon, A., Gallot, G., Gale, G.M.: Cascaded second-order effects in the femtosecond regime in \(\beta \)-barium borate: self-compression in a visible femtosecond optical parametric oscillator. Opt. Lett. 20, 1556–1558 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    Liu, X., Qian, L., Wise, F.: High-energy pulse compression by use of negative phase shifts produced by the cascade \(\chi ^{(2)}:\chi ^{(2)}\) nonlinearity. Opt. Lett. 23, 1777–1779 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Ashihara, S., Nishina, J., Shimura, T., Kuroda, K.: Soliton compression of femtosecond pulses in quadratic media. J. Opt. Soc. Am. B 19, 2505–2510 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Moses, J., Wise, F.W.: Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal. Opt. Lett. 31, 1881–1883 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Zhou, B.B., Chong, A., Wise, F.W., Bache, M.: Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions. Phys. Rev. Lett. 109, 043902 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Viotti, A.-L., Lindberg, R., Zukauskas, A., Budriunas, R., Kucinskas, D., Stanislauskas, T., Laurell, F., Pasiskevicius, V.: Supercontinuum generation and soliton self-compression in \(\chi ^{(2)}\)-structured KTiOPO\(_4\). Optica 5, 711–717 (2018)CrossRefGoogle Scholar
  31. 31.
    Seidel, M., Brons, J., Arisholm, G., Fritsch, K., Pervak, V., Pronin, O.: Efficient high-power ultrashort pulse compression in self-defocusing bulk media. Sci. Rep. 7, 1410 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Zhou, B., Guo, H., Bache, M.: Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal. Opt. Express 23, 6924–6936 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Zhou, B., Bache, M.: Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal. Opt. Lett. 40, 4257–4260 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Bache, M., Guo, H., Zhou, B.: Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals. Opt. Mater. Express 3, 1647–1657 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Šuminas, R., Tamošauskas, G., Dubietis, A.: Filamentation-free self-compression of mid-infrared pulses in birefringent crystals with second-order cascading-enhanced self-focusing nonlinearity. Opt. Lett. 43, 235–238 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Chekalin, S.V., Kompanets, V.O., Smetanina, E.O., Kandidov, V.P.: Light bullets and supercontinuum spectrum during femtosecond pulse filamentation under conditions of anomalous group-velocity dispersion in fused silica. Quantum Electron. 43, 326–331 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Durand, M., Jarnac, A., Houard, A., Liu, Y., Grabielle, S., Forget, N., Durécu, A., Couairon, A., Mysyrowicz, A.: Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids: a new regime of filamentation. Phys. Rev. Lett. 110, 115003 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Gražulevičiūtė, I., Šuminas, R., Tamošauskas, G., Couairon, A., Dubietis, A.: Carrier-envelope phase-stable spatiotemporal light bullets. Opt. Lett. 40, 3719–3722 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Chekalin, S.V., Dokukina, A.E., Dormidonov, A.E., Kompanets, V.O., Smetanina, E.O., Kandidov, V.P.: Light bullets from a femtosecond filament. J. Phys. B 48, 094008 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Majus, D., Tamošauskas, G., Gražulevičiūtė, I., Garejev, N., Lotti, A., Couairon, A., Faccio, D., Dubietis, A.: Nature of spatiotemporal light bullets in bulk Kerr media. Phys. Rev. Lett. 112, 193901 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Hemmer, M., Baudisch, M., Thai, A., Couairon, A., Biegert, J.: Self-compression to sub-3-cycle duration of mid-infrared optical pulses in dielectrics. Opt. Express 21, 28095–28102 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Baudisch, M., Pires, H., Ishizuki, H., Taira, T., Hemmer, M., Biegert, J.: Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz. J. Opt. 17, 094002 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Liang, H., Krogen, P., Grynko, R., Novak, O., Chang, C.-L., Stein, G.J., Weerawarne, D., Shim, B., Kärtner, F.X., Hong, K.-H.: Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics. Opt. Lett. 40, 1069–1072 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Chekalin, S.V., Kompanets, V.O., Dormidonov, A.E., Kandidov, V.P.: Path length and spectrum of single-cycle mid-IR light bullets in transparent dielectrics. Quantum Electron. 48, 372–377 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    Šuminas, R., Tamošauskas, G., Valiulis, G., Dubietis, A.: Spatiotemporal light bullets and supercontinuum generation in \(\beta \)-BBO crystal with competing quadratic and cubic nonlinearities. Opt. Lett. 41, 2097–2100 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Voronin, A.A., Zheltikov, A.M.: Asymptotically one-dimensional dynamics of high-peak-power ultrashort laser pulses. J. Opt. 18, 115501 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    Voronin, A.A., Zheltikov, A.M.: Pulse self-compression to single-cycle pulse widths a few decades above the self-focusing threshold. Phys. Rev. A 94, 023824 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    Balakin, A.A., Kim, A.V., Litvak, A.G., Mironov, V.A., Skobelev, S.A.: Extreme self-compression of laser pulses in the self-focusing mode resistant to transverse instability. Phys. Rev. A 94, 043812 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    Bravy, B.G., Gordienko, V.M., Platonenko, V.T.: Kerr effect-assisted self-compression in dielectric to single-cycle pulse width and to terawatt power level in mid-IR. Opt. Commun. 344, 7–11 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Bravy, B.G., Gordienko, V.M., Platonenko, V.T.: Self-compression of terawatt level picosecond \(10~\upmu \)m laser pulses in NaCl. Laser Phys. Lett. 11, 065401 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Li, W., Li, Y., Xu, Y., Guo, X., Lu, J., Wang, P., Leng, Y.: Design and simulation of a single-cycle source tunable from 2 to 10 micrometers. Opt. Express 25, 7101–7111 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    Shumakova, V., Malevich, P., Ališauskas, S., Voronin, A., Zheltikov, A.M., Faccio, D., Kartashov, D., Baltuška, A., Pugžlys, A.: Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nat. Commun. 7, 12877 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    Marcinkevičiūtė, A., Garejev, N., Šuminas, R., Tamošauskas, G., Dubietis, A.: A compact, self-compression-based sub-3 optical cycle source in the \(3{-}4~\upmu \)m spectral range. J. Opt. 19, 105505 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    Lu, F., Xia, P., Matsumoto, Y., Kanai, T., Ishii, N., Itatani, J.: Generation of sub-two-cycle CEP-stable optical pulses at \(3.5~\upmu \)m from a KTA-based optical parametric amplifier with multiple-plate compression. Opt. Lett. 43, 2720–2723 (2018)Google Scholar
  55. 55.
    Jargot, G., Daher, N., Lavenu, L., Delen, X., Forget, N., Hanna, M., Georges, P.: Self-compression in a multipass cell. Opt. Lett. 43, 5643–5646 (2018)ADSCrossRefGoogle Scholar
  56. 56.
    Gholam-Mirzaei, S., Beetar, J.E., Chacón, A., Chini, M.: High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses. J. Opt. Soc. Am. B 35, A27–A31 (2018)ADSCrossRefGoogle Scholar
  57. 57.
    Garejev, N., Jukna, V., Tamošauskas, G., Veličkė, M., Šuminas, R., Couairon, A., Dubietis, A.: Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium. Opt. Express 24, 17060–17068 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    Stepanov, E.A., Lanin, A.A., Voronin, A.A., Fedotov, A.B., Zheltikov, A.M.: Solid-state source of subcycle pulses in the midinfrared. Phys. Rev. Lett. 117, 043901 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    Grynko, R.I., Nagar, G.C., Shim, B.: Wavelength-scaled laser filamentation in solids and plasma-assisted subcycle light-bullet generation in the long-wavelength infrared. Phys. Rev. A 98, 023844 (2018)ADSCrossRefGoogle Scholar
  60. 60.
    Alfano, R.R. (ed.): The Supercontinuum Laser Source. Springer (2006)Google Scholar
  61. 61.
    Ziane, O., Zaiba, S., Melikechi, N.: Continuum generation in water and carbon tetrachloride using a picosecond Nd-YAG laser pulse. Opt. Commun. 273, 200–206 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    De Boni, L., Toro, C., Hernández, F.E.: Pump polarization-state preservation of picosecond generated white-light supercontinuum. Opt. Express 16, 957–964 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    Gragson, D.E., Alavi, D.S., Richmond, G.L.: Tunable picosecond infrared laser system based on parametric amplification in KTP with a Ti:sapphire amplifier. Opt. Lett. 20, 1991–1993 (1995)ADSCrossRefGoogle Scholar
  64. 64.
    Zhang, J., Zhang, Q.L., Zhang, D.X., Feng, B.H., Zhang, J.Y.: Generation and optical parametric amplification of picosecond supercontinuum. Appl. Opt. 49, 6645–6650 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Bradler, M., Baum, P., Riedle, E.: Continuum generation in laser host materials towards table-top OPCPA. In: Ultrafast Phenomena 2010, paper ME25 (2010)Google Scholar
  66. 66.
    Bradler, M., Riedle, E.: Continuum generation in laser host materials with pump pulse durations covering the entire femtosecond regime. In: Advanced Solid-State Photonics (ASSP) 2011, paper AMD4 (2011)Google Scholar
  67. 67.
    Calendron, A.-L., Çankaya, H., Cirmi, G., Kärtner, F.X.: White-light generation with sub-ps pulses. Opt. Express 23, 13866–13879 (2015)ADSCrossRefGoogle Scholar
  68. 68.
    Ca̧nkaya, H., Calendron, A.-L., Zhou, C., Chia, S.-H., Mücke, O.D., Cirmi, G., Kärtner, F.X.: 40-\(\upmu \)J passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers. Opt. Express 24, 25169–25180 (2016)Google Scholar
  69. 69.
    Schulz, M., Riedel, R., Willner, A., Mans, T., Schnitzler, C., Russbueldt, P., Dolkemeyer, J., Seise, E., Gottschall, T., Hädrich, S., Duesterer, S., Schlarb, H., Feldhaus, J., Limpert, J., Faatz, B., Tünnermann, A., Rossbach, J., Drescher, M., Tavella, F.: Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification. Opt. Lett. 36, 2456–2458 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    Riedel, R., Stephanides, A., Prandolini, M.J., Gronloh, B., Jungbluth, B., Mans, T., Tavella, F.: Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers. Opt. Lett. 39, 1422–1424 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    Gražulevičiūtė, I., Skeivytė, M., Keblytė, E., Galinis, J., Tamošauskas, G., Dubietis, A.: Supercontinuum generation in YAG and sapphire with picosecond laser pulses. Lith. J. Phys. 55, 110–116 (2015)CrossRefGoogle Scholar
  72. 72.
    Galinis, J., Tamošauskas, G., Gražulevičiūtė, I., Keblytė, E., Jukna, V., Dubietis, A.: Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses. Phys. Rev. A 92, 033857 (2015)ADSCrossRefGoogle Scholar
  73. 73.
    Jukna, V., Garejev, N., Tamošauskas, G., Dubietis, A.: Role of external focusing geometry in supercontinuum generation in bulk solid-state media. J. Opt. Soc. Am. B 36, A54–A60 (2019)ADSCrossRefGoogle Scholar
  74. 74.
    Alismail, A., Wang, H., Altwaijry, N., Fattahi, H.: Carrier-envelope phase stable, \(5.4~\upmu \)J, broadband, mid-infrared pulse generation from a 1-ps, Yb:YAG thin-disk laser. Appl. Opt. 56, 4990–4994 (2017)Google Scholar
  75. 75.
    Indra, L., Batysta, F., Hříbek, P., Novák, J., Hubka, Z., Green, J.T., Antipenkov, R., Boge, R., Naylon, J.A., Bakule, P., Rus, B.: Picosecond pulse generated supercontinuum as a stable seed for OPCPA. Opt. Lett. 42, 843–846 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    Cheng, S., Chatterjee, G., Tellkamp, F., Ruehl, A., Miller, R.J.D.: Multi-octave supercontinuum generation in YAG pumped by mid-infrared, multi-picosecond pulses. Opt. Lett. 43, 4329–4332 (2018)ADSCrossRefGoogle Scholar
  77. 77.
    Schmidt, B.E., Hage, A., Mans, T., Légaré, F., Wörner, H.J.: Highly stable, 54 mJ Yb-InnoSlab laser platform at 0.5 kW average power. Opt. Express 25, 17549–17555 (2017)Google Scholar
  78. 78.
    Kasmi, L., Kreier, D., Bradler, M., Riedle, E., Baum, P.: Femtosecond single-electron pulses generated by two-photon photoemission close to the work function. New J. Phys. 17, 033008 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    Emons, M., Steinmann, A., Binhammer, T., Palmer, G., Schultze, M., Morgner, U.: Sub-10-fs pulses from a MHz-NOPA with pulse energies of 0.4 \(\upmu \)J. Opt. Express 18, 1191–1196 (2010)Google Scholar
  80. 80.
    Fattahi, H., Wang, H., Alismail, A., Arisholm, G., Pervak, V., Azzeer, A.M., Krausz, F.: Near-PHz-bandwidth, phase-stable continua generated from a Yb:YAG thin-disk amplifier. Opt. Express 24, 24337–24346 (2016)ADSCrossRefGoogle Scholar
  81. 81.
    Thiré, N., Maksimenka, R., Kiss, B., Ferchaud, C., Bizouard, P., Cormier, E., Osvay, K., Forget, N.: 4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise. Opt. Express 25, 1505–1514 (2017)ADSCrossRefGoogle Scholar
  82. 82.
    Rigaud, P., van de Walle, A., Hanna, M., Forget, N., Guichard, F., Zaouter, Y., Guesmi, K., Druon, F., Georges, P.: Supercontinuum-seeded few-cycle midinfrared OPCPA system. Opt. Express 24, 26494–26502 (2016)ADSCrossRefGoogle Scholar
  83. 83.
    Archipovaite, G.M., Petit, S., Delagnes, J.-C., Cormier, E.: 100 kHz Yb-fiber laser pumped \(3~\upmu \)m optical parametric amplifier for probing solid-state systems in the strong field regime. Opt. Lett. 42, 891–894 (2017)ADSCrossRefGoogle Scholar
  84. 84.
    Neuhaus, M., Fuest, H., Seeger, M., Schötz, J., Trubetskov, M., Russbueldt, P., Hoffmann, H.D., Riedle, E., Major, Z., Pervak, V., Kling, M.F., Wnuk, P.: 10 W CEP-stable few-cycle source at \(2~\upmu \)m with 100 kHz repetition rate. Opt. Express 26, 16074–16085 (2018)Google Scholar
  85. 85.
    Kanai, T., Malevich, P., Kangaparambil, S.S., Ishida, K., Mizui, M., Yamanouchi, K., Hoogland, H., Holzwarth, R., Pugzlys, A., Baltuska, A.: Parametric amplification of 100 fs mid-infrared pulses in ZnGeP\(_2\) driven by a Ho:YAG chirped-pulse amplifier. Opt. Lett. 42, 683–686 (2017)ADSCrossRefGoogle Scholar
  86. 86.
    Malevich, P., Kanai, T., Hoogland, H., Holzwarth, R., Baltuška, A., Pugžlys, A.: Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier. Opt. Lett. 41, 930–933 (2017)ADSCrossRefGoogle Scholar
  87. 87.
    Sandhu, A.S., Banerjee, S., Goswami, D.: Suppression of supercontinuum generation with circularly polarized light. Opt. Commun. 181, 101–107 (2000)ADSCrossRefGoogle Scholar
  88. 88.
    Srivastava, A., Goswami, A.: Control of supercontinuum generation with polarization of incident laser pulses. Appl. Phys. B 77, 325–328 (2003)ADSCrossRefGoogle Scholar
  89. 89.
    Vasa, P., Dota, K., Singh, M., Kushavah, D., Singh, B.P., Mathur, D.: Power- and polarization-dependent supercontinuum generation in \(\alpha \)-BaB\(_2\)O\(_4\) crystals by intense, near-infrared, femtosecond laser pulses. Phys. Rev. A 91, 053837 (2015)ADSCrossRefGoogle Scholar
  90. 90.
    Kartazaev, V., Alfano, R.R.: Supercontinuum generated in calcite with chirped femtosecond pulses. Opt. Lett. 32, 3293–3295 (2007)ADSCrossRefGoogle Scholar
  91. 91.
    Faccio, D., Averchi, A., Lotti, A., Kolesik, M., Moloney, J.V., Couairon, A., Di Trapani, P.: Generation and control of extreme blueshifted continuum peaks in optical Kerr media. Phys. Rev. A 78, 033825 (2008)ADSCrossRefGoogle Scholar
  92. 92.
    Potemkin, F.V., Mareev, E.I., Smetanina, E.O.: Influence of wavefront curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water. Phys. Rev. A 97, 033801 (2018)ADSCrossRefGoogle Scholar
  93. 93.
    Ni, X., Wang, C., Liang, X., Al-Rubaiee, M., Alfano, R.R.: Fresnel diffraction supercontinuum generation. IEEE J. Sel. Top. Quantum Electron. 10, 1229–1232 (2004)CrossRefGoogle Scholar
  94. 94.
    Bradler, M., Baum, P., Riedle, E.: Femtosecond continuum generation in bulk laser host materials with sub-\(\upmu \)J pump pulses. Appl. Phys. B 97, 561–574 (2009)ADSCrossRefGoogle Scholar
  95. 95.
    Jukna, V., Galinis, J., Tamošauskas, G., Majus, D., Dubietis, A.: Infrared extension of femtosecond supercontinuum generated by filamentation in solid-state media. Appl. Phys. B 116, 477–483 (2014)ADSCrossRefGoogle Scholar
  96. 96.
    Schumacher, D.: Controlling continuum generation. Opt. Lett. 27, 451–453 (2002)ADSCrossRefGoogle Scholar
  97. 97.
    Dharmadhikari, J.A., Dharmadhikari, A.K., Dota, K., Mathur, D.: Influencing supercontinuum generation by phase distorting an ultrashort laser pulse. Opt. Lett. 40, 241–243 (2015)ADSCrossRefGoogle Scholar
  98. 98.
    Thompson, J.V., Zhokhov, P.A., Springer, M.M., Traverso, A.J., Yakovlev, V.V., Zheltikov, A.M., Sokolov, A.V., Scully, M.O.: Amplitude concentration in a phase-modulated spectrum due to femtosecond filamentation. Sci. Rep. 7, 43367 (2017)ADSCrossRefGoogle Scholar
  99. 99.
    Romero, C., Borrego-Varillas, R., Camino, A., Mínguez-Vega, G., Mendoza-Yero, O., Hernández-Toro, J., Vázquez de Aldana, J.R.: Diffractive optics for spectral control of the supercontinuum generated in sapphire with femtosecond pulses. Opt. Express 19, 4977–4984 (2011)ADSCrossRefGoogle Scholar
  100. 100.
    Borrego-Varillas, R., Romero, C., Mendoza-Yero, O., Mínguez-Vega, G., Gallardo, I., Vázquez de Aldana, J.R.: Femtosecond filamentation in sapphire with diffractive lenses. J. Opt. Soc. Am. B 30, 2059–2065 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    Kaya, N., Strohaber, J., Kolomenskii, A.A., Kaya, G., Schroeder, H., Schuessler, H.A.: White-light generation using spatially-structured beams of femtosecond radiation. Opt. Express 20, 13337–13346 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    Borrego-Varillas, R., Perez-Vizcaino, J., Mendoza-Yero, O., Minguez-Vega, G., de Aldana, J.R.V., Lancis, J.: Controlled multibeam supercontinuum generation with a spatial light modulator. IEEE Photon. Technol. Lett. 26, 1661–1664 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    Zhdanova, A.A., Shen, Y., Thompson, J.V., Scully, M.O., Yakovlev, V.V., Sokolov, A.V.: Controlled supercontinua via spatial beam shaping. J. Mod. Opt. 65, 1332–1335 (2018)ADSCrossRefGoogle Scholar
  104. 104.
    Zhong, Y., Diao, H., Zeng, Z., Zheng, Y., Ge, X., Li, R., Xu, Z.: CEP-controlled supercontinuum generation during filamentation with mid-infrared laser pulse. Opt. Express 22, 29170–29178 (2014)ADSCrossRefGoogle Scholar
  105. 105.
    Wang, K., Qian, L., Luo, H., Yuan, P., Zhu, H.: Ultrabroad supercontinuum generation by femtosecond dual-wavelength pumping in sapphire. Opt. Express 14, 6366–6371 (2006)ADSCrossRefGoogle Scholar
  106. 106.
    Kolomenskii, A.A., Strohaber, J., Kaya, N., Kaya, G., Sokolov, A.V., Schuessler, H.A.: White-light generation control with crossing beams of femtosecond laser pulses. Opt. Express 24, 282–293 (2016)ADSCrossRefGoogle Scholar
  107. 107.
    Stelmaszczyk, K., Rohwetter, P., Petit, Y., Fechner, M., Kasparian, J., Wolf, J.-P., Wöste, L.: White-light symmetrization by the interaction of multifilamenting beams. Phys. Rev. A 79, 053856 (2009)ADSCrossRefGoogle Scholar
  108. 108.
    Li, P.-P., Cai, M.-Q., Lü, J.-Q., Wang, D., Liu, G.-G., Tu, C., Li, Y., Wang, H.-T.: Unveiling of control on the polarization of supercontinuum spectra based on ultrafast birefringence induced by filamentation. J. Opt. Soc. Am. B 35, 2916–2922 (2018)Google Scholar
  109. 109.
    Dubietis, A., Tamošauskas, G., Šuminas, R., Jukna, V., Couairon, A.: Ultrafast supercontinuum generation in bulk condensed media. Lith. J. Phys. 57, 113–157 (2017)CrossRefGoogle Scholar
  110. 110.
    Jimbo, T., Caplan, V.L., Li, Q.X., Wang, Q.Z., Ho, P.P., Alfano, R.R.: Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations. Opt. Lett. 12, 477–479 (1977)ADSCrossRefGoogle Scholar
  111. 111.
    Wang, C., Fu, Y., Zhou, Z., Cheng, Y., Xu, Z.: Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water. Appl. Phys. Lett. 90, 181119 (2007)ADSCrossRefGoogle Scholar
  112. 112.
    Vasa, P., Singh, M., Bernard, R., Dharmadhikari, A.K., Dharmadhikari, J.A., Mathur, D.: Supercontinuum generation in water doped with gold nanoparticles. Appl. Phys. Lett. 103, 111109 (2013)ADSCrossRefGoogle Scholar
  113. 113.
    Vasa, P., Dharmadhikari, J.A., Dharmadhikari, A.K., Sharma, R., Singh, M., Mathur, D.: Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion. Phys. Rev. A 89, 043834 (2014)ADSCrossRefGoogle Scholar
  114. 114.
    Wang, Y., Ni, H., Zhan, W., Yuan, J., Wang, R.: Supercontinuum and THz generation from Ni implanted LiNbO\(_3\) under 800 nm laser excitation. Opt. Commun. 291, 334–336 (2013)ADSCrossRefGoogle Scholar
  115. 115.
    Robinson, T.S., Patankar, S., Floyd, E., Stuart, N.H., Hopps, N., Smith, R.A.: Spectral characterization of a supercontinuum source based on nonlinear broadening in an aqueous K\(_2\)ZnCl\(_4\) salt solution. Appl. Opt. 56, 9837–9845 (2017)ADSCrossRefGoogle Scholar
  116. 116.
    Wang, L., Fan, Y.-X., Yan, Z.-D., Wang, H.-T., Wang, Z.-L.: Flat-plateau supercontinuum generation in liquid absorptive medium by femtosecond filamentation. Opt. Lett. 35, 2925–2927 (2010)ADSCrossRefGoogle Scholar
  117. 117.
    Santhosh, C., Dharmadhikari, A.K., Alti, K., Dharmadhikari, J.A., Mathur, D.: Suppression of ultrafast supercontinuum generation in a salivary protein. J. Biomed. Opt. 12, 020510 (2007)ADSCrossRefGoogle Scholar
  118. 118.
    Santhosh, C., Dharmadhikari, A.K., Dharmadhikari, J.A., Alti, K., Mathur, D.: Supercontinuum generation in macromolecular media. Appl. Phys. B 99, 427–432 (2010)ADSCrossRefGoogle Scholar
  119. 119.
    Li, H., Shi, Z., Wang, X., Sui, L., Li, S., Jin, M.: Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water. Chem. Phys. Lett. 681, 86–89 (2017)ADSCrossRefGoogle Scholar
  120. 120.
    Driben, R., Husakou, A., Herrmann, J.: Supercontinuum generation in aqueous colloids containing silver nanoparticles. Opt. Lett. 34, 2132–2134 (2009)ADSCrossRefGoogle Scholar
  121. 121.
    Kulchin, Y.N., Golik, S.S., Proschenko, D.Y., Chekhlenok, A.A., Postnova, I.V., Mayor, A.Y., Shchipunov, Y.A.: Supercontinuum generation and filamentation of ultrashort laser pulses in hybrid silicate nanocomposite materials on the basis of polysaccharides and hyperbranched polyglycidols. Quantum Electron. 43, 370–373 (2013)ADSCrossRefGoogle Scholar
  122. 122.
    Ramachandran, H., Dharmadhikari, J.A., Dharmadhikari, A.K.: Femtosecond supercontinuum generation in scattering media. J. Opt. Soc. Am. B 36, A38–A42 (2019)ADSCrossRefGoogle Scholar
  123. 123.
    Paipulas, D., Balskienė, A., Sirutkaitis, V.: Experimental study of filamentation and supercontinuum generation in laser-modified fused silica. Lith. J. Phys. 52, 327–333 (2012)CrossRefGoogle Scholar
  124. 124.
    Šuminas, R., Tamošauskas, G., Jukna, V., Couairon, A., Dubietis, A.: Second-order cascading-assisted filamentation and controllable supercontinuum generation in birefringent crystals. Opt. Express 25, 6746–6756 (2017)ADSCrossRefGoogle Scholar
  125. 125.
    Dubietis, A., Polesana, P., Valiulis, G., Stabinis, A., Di Trapani, P., Piskarskas, A.: Axial emission and spectral broadening in self-focusing of femtosecond Bessel beams. Opt. Express 15, 4168–4175 (2007)ADSCrossRefGoogle Scholar
  126. 126.
    Sun, X., Gao, H., Zeng, B., Xu, S., Liu, W., Cheng, Y., Xu, Z., Mu, G.: Multiple filamentation generated by focusing femtosecond laser with axicon. Opt. Lett. 37, 857–859 (2012)ADSCrossRefGoogle Scholar
  127. 127.
    Majus, D., Dubietis, A.: Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study. J. Opt. Soc. Am. B 30, 994–999 (2013)ADSCrossRefGoogle Scholar
  128. 128.
    Dota, K., Pathak, A., Dharmadhikari, J.A., Mathur, D., Dharmadhikari, A.K.: Femtosecond laser filamentation in condensed media with Bessel beams. Phys. Rev. A 86, 023808 (2012)ADSCrossRefGoogle Scholar
  129. 129.
    Dota, K., Dharmadhikari, J.A., Mathur, D., Dharmadhikari, A.K.: Supercontinuum generation in barium fluoride using Bessel beams. Chin. J. Phys. 52, 431–439 (2014)Google Scholar
  130. 130.
    Polynkin, P., Kolesik, M., Moloney, J.: Filamentation of femtosecond laser Airy beams in water. Phys. Rev. Lett. 103, 123902 (2009)ADSCrossRefGoogle Scholar
  131. 131.
    Ament, C., Kolesik, M., Moloney, J.V., Polynkin, P.: Self-focusing dynamics of ultraintense accelerating Airy waveforms in water. Phys. Rev. A 86, 043842 (2012)ADSCrossRefGoogle Scholar
  132. 132.
    Gong, C., Li, Z., Hua, L.Q., Quan, W., Liu, X.J.: Angle-resolved conical emission spectra from filamentation in a solid with an Airy pattern and a Gaussian laser beam. Opt. Lett. 41, 4305–4308 (2016)ADSCrossRefGoogle Scholar
  133. 133.
    Neshev, D.N., Dreischuh, A., Maleshkov, G., Samoc, M., Kivshar, Y.S.: Supercontinuum generation with optical vortices. Opt. Express 18, 18368–18373 (2010)ADSCrossRefGoogle Scholar
  134. 134.
    Maleshkov, G., Neshev, D.N., Petrova, E., Dreischuh, A.: Filamentation and supercontinuum generation by singular beams in self-focusing nonlinear media. J. Opt. 13, 064015 (2011)ADSCrossRefGoogle Scholar
  135. 135.
    Aleksandrovsky, A.S., Vyunishev, A.M., Zaitsev, A.I., Slabko, V.V.: Random quasi-phase-matched nonlinear optical conversion of supercontinuum to the ultraviolet. Appl. Phys. Lett. 103, 251104 (2013)ADSCrossRefGoogle Scholar
  136. 136.
    Suchowski, H., Porat, G., Arie, A.: Adiabatic processes in frequency conversion. Laser Photon. Rev. 8, 333–367 (2014)ADSCrossRefGoogle Scholar
  137. 137.
    Krogen, P., Suchowski, H., Liang, H., Flemens, N., Hong, K.-H., Kärtner1, F.X., Moses, J.: Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat. Photon. 11, 222–226 (2017)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laser Research CenterVilnius UniversityVilniusLithuania
  2. 2.Centre de Physique ThéoriqueEcole polytechnique, CNRS, Institut Polytechnique de ParisParisFrance

Personalised recommendations