Experimental Results

  • Audrius DubietisEmail author
  • Arnaud Couairon
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


This chapter presents a comprehensive overview of the literature and up-to-date experimental results on supercontinuum generation in commonly used wide-bandgap dielectric materials: water, fused silica, alkali metal fluorides, and laser host crystals, achieved so far with a wide variety of pump wavelengths, ranging from the ultraviolet to the mid-infrared, accessing the filamentation regimes under normal, zero, and anomalous GVD in these materials.


  1. 1.
    Smith, W.L., Liu, P., Bloembergen, N.: Superbroadening in H\(_2\)O and D\(_2\)O by self-focused picosecond pulses from a YAlG: Nd laser. Phys. Rev. A 15, 2396–2403 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    Golub, I.: Optical characteristics of supercontinuum generation. Opt. Lett. 15, 305–307 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    He, G.S., Xu, G.C., Cui, Y., Prasad, P.N.: Difference of spectral superbroadening behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses. Appl. Opt. 32, 4507–4512 (1993)Google Scholar
  4. 4.
    Brodeur, A., Ilkov, F.A., Chin, S.L.: Beam filamentation and the white light continuum divergence. Opt. Commun. 129, 193–198 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Wittmann, M., Penzkofer, A.: Spectral supebroadening of femtosecond laser pulses. Opt. Commun. 126, 308–317 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Nagura, C., Suda, A., Kawano, H., Obara, M., Midorikawa, K.: Generation and characterization of ultrafast white-light continuum in condensed media. Appl. Opt. 41, 3735–3742 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Jarnac, A., Tamošauskas, G., Majus, D., Houard, A., Mysyrowicz, A., Couairon, A., Dubietis, A.: Whole life cycle of femtosecond ultraviolet filaments in water. Phys. Rev. A 89, 033809 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Dubietis, A., Tamošauskas, G., Diomin, I., Varanavičius, A.: Self-guided propagation of femtosecond light pulses in water. Opt. Lett. 28, 1269–1271 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Liu, W., Kosareva, O., Golubtsov, I.S., Iwasaki, A., Becker, A., Kandidov, V.P., Chin, S.L.: Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water. Appl. Phys. B 75, 595–599 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Liu, W., Kosareva, O., Golubtsov, I.S., Iwasaki, A., Becker, A., Kandidov, V.P., Chin, S.L.: Femtosecond laser pulse filamentation versus optical breakdown in H\(_2\)O. Appl. Phys. B 76, 215–229 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Kandidov, V.P., Kosareva, O.G., Golubtsov, I.S., Liu, W., Becker, A., Aközbek, N., Bowden, C.M., Chin, S.L.: Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation). Appl. Phys. B 77, 149–165 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Cook, K., Kar, A.K., Lamb, R.A.: White-light supercontinuum interference of self-focused filaments in water. Appl. Phys. Lett. 83, 3861–3863 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Liu, J., Schroeder, H., Chin, S.L., Li, R., Xu, Z.: Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation. Opt. Express 13, 10248–10259 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Tcypkin, A.N., Putilin, S.E., Melnik, M.V., Makarov, E.A., Bespalov, V.G., Kozlov, S.A.: Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet. Appl. Opt. 55, 8390–8394 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Potemkin, F.V., Mareev, E.I., Smetanina, E.O.: Influence of wavefront curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water. Phys. Rev. A 97, 033801 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Vasa, P., Dharmadhikari, J.A., Dharmadhikari, A.K., Sharma, R., Singh, M., Mathur, D.: Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion. Phys. Rev. A 89, 043834 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Dharmadhikari, J.A., Steinmeyer, G., Gopakumar, G., Mathur, D., Dharmadhikari, A.K.: Femtosecond supercontinuum generation in water in the vicinity of absorption bands. Opt. Lett. 41, 3475–3478 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Tzortzakis, S., Papazoglou, D.G., Zergioti, I.: Long-range filamentary propagation of subpicosecond ultraviolet laser pulses in fused silica. Opt. Lett. 31, 796–798 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Nguyen, N.T., Saliminia, A., Liu, W., Chin, S.L., Vallée, R.: Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses. Opt. Lett. 28, 1591–1593 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Ashcom, J.B., Gattass, R.R., Schaffer, C.B., Mazur, E.: Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica. J. Opt. Soc. Am. B 23, 2317–2322 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Fang, X.-J., Kobayashi, T.: Evolution of a super-broadened spectrum in a filament generated by an ultrashort intense laser pulse in fused silica. Appl. Phys. B 77, 167–170 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Dachraoui, H., Oberer, C., Michelswirth, M., Heinzmann, U.: Direct time-domain observation of laser pulse filaments in transparent media. Phys. Rev. A 82, 043820 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Zhang, L., Xi, T., Hao, Z., Lin, J.: Supercontinuum accumulation along a single femtosecond filament in fused silica. J. Phys. D 49, 115201 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Zafar, S., Li, D., Hao, Z., Lin, J.: Influences of astigmatic focusing geometry on femtosecond filamentation and supercontinuum generation in fused silica. Optik 130, 765–769 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Dharmadhikari, A.K., Rajgara, F.A., Mathur, D.: Systematic study of highly efficient white-light generation in transparent materials using intense femtosecond pulses. Appl. Phys. B 80, 61–66 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Dharmadhikari, A.K., Rajgara, F.A., Mathur, D.: Depolarization of white light generated by ultrashort laser pulses in optical media. Opt. Lett. 31, 2184–2186 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Yang, J., Mu, G.: Multi-dimensional observation of white-light filaments generated by femtosecond laser pulses in condensed medium. Opt. Express 15, 4943–4952 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Jiang, J., Zhong, Y., Zheng, Y., Zeng, Z., Ge, X., Li, R.: Broadening of white-light continuum by filamentation in BK7 glass at its zero-dispersion point. Phys. Lett. A 379, 1929–1933 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Dubietis, A., Tamošauskas, G., Šuminas, R., Jukna, V., Couairon, A.: Ultrafast supercontinuum generation in bulk condensed media (Review). Lith. J. Phys. 57, 113–157 (2017)CrossRefGoogle Scholar
  30. 30.
    Saliminia, A., Chin, S.L., Vallée, R.: Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 \(\upmu \)m. Opt. Express 13, 5731–5738 (2005)Google Scholar
  31. 31.
    Naudeau, M.L., Law, R.J., Luk, T.S., Nelson, T.R., Cameron, S.M.: Observation of nonlinear optical phenomena in air and fused silica using a 100 GW, 1.54 \(\upmu \)m source. Opt. Express 14, 6194–6200 (2006)Google Scholar
  32. 32.
    Faccio, D., Averchi, A., Couairon, A., Dubietis, A., Piskarskas, R., Matijošius, A., Bragheri, F., Porras, M.A., Piskarskas, A., Di Trapani, P.: Competition between phase-matching and stationarity in Kerr-driven optical pulse filamentation. Phys. Rev. E 74, 047603 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Porras, M.A., Dubietis, A., Matijošius, A., Piskarskas, R., Bragheri, F., Averchi, A., Di Trapani, P.: Characterization of conical emission of light filaments in media with anomalous dispersion. J. Opt. Soc. Am. B 24, 581–584 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Durand, M., Lim, K., Jukna, V., McKee, E., Baudelet, M., Houard, A., Richardson, M., Mysyrowicz, A., Couairon, A.: Blueshifted continuum peaks from filamentation in the anomalous dispersion regime. Phys. Rev. A 87, 043820 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Smetanina, E.O., Kompanets, V.O., Chekalin, S.V., Dormidonov, A.E., Kandidov, V.P.: Anti-Stokes wing of femtosecond laser filament supercontinuum in fused silica. Opt. Lett. 38, 16–18 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Chekalin, S.V., Kompanets, V.O., Dokukina, A.E., Dormidonov, A.E., Smetanina, E.O., Kandidov, V.P.: Visible supercontinuum radiation of light bullets in the femtosecond filamentation of IR pulses in fused silica. Quantum Electron. 45, 401–407 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Gražulevičiūtė, I., Šuminas, R., Tamošauskas, G., Couairon, A., Dubietis, A.: Carrier-envelope phase-stable spatiotemporal light bullets. Opt. Lett. 40, 3719–3722 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Darginavičius, J., Majus, D., Jukna, V., Garejev, N., Valiulis, G., Couairon, A., Dubietis, A.: Ultrabroadband supercontinuum and third-harmonic generation in bulk solids with two optical-cycle carrier-envelope phase-stable pulses at 2 \(\upmu \)m. Opt. Express 21, 25210–25220 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Dharmadhikari, J.A., Deshpande, R.A., Nath, A., Dota, K., Mathur, D., Dharmadhikari, A.K.: Effect of group velocity dispersion on supercontinuum generation and filamentation in transparent solids. Appl. Phys. B 117, 471–479 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Garejev, N., Tamošauskas, G., Dubietis, A.: Comparative study of multioctave supercontinuum generation in fused silica, YAG, and LiF in the range of anomalous group velocity dispersion. J. Opt. Soc. Am. B 34, 88–94 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Yang, Y., Liao, M., Li, X., Bi, W., Ohishi, Y., Cheng, T., Fang, Y., Zhao, G., Gao, W.: Filamentation and supercontinuum generation in lanthanum glass. J. Appl. Phys. 121, 023107 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Liao, M., Gao, W., Cheng, T., Xue, X., Duan, Z., Deng, D., Kawashima, H., Suzuki, T., Ohishi, Y.: Five-octave-spanning supercontinuum generation in fluoride glass. Appl. Phys. Express 6, 032503 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Liao, M., Gao, W., Cheng, T., Duan, Z., Xue, X., Kawashima, H., Suzuki, T., Ohishi, Y.: Ultrabroad supercontinuum generation through filamentation in tellurite glass. Laser Phys. Lett. 10, 036002 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Béjot, P., Billard, F., Peureux, C., Diard, T., Picot-Clémente, J., Strutynski, C., Mathey, P., Mouawad, O., Faucher, O., Nagasaka, K., Ohishi, Y., Smektala, F.: Filamentation-induced spectral broadening and pulse shortening of infrared pulses in Tellurite glass. Opt. Commun. 380, 245–249 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Yu, Y., Gai, X., Wang, T., Ma, P., Wang, R., Yang, Z., Choi, D.-Y., Madden, S., Luther-Davies, B.: Mid-infrared supercontinuum generation in chalcogenides. Opt. Mater. Express 3, 1075–1086 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Mouawad, O., Béjot, P., Billard, F., Mathey, P., Kibler, B., Désévédavy, F., Gadret, G., Jules, J.-C., Faucher, O., Smektala, F.: Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses. Appl. Phys. B 121, 433–438 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Stingel, A.M., Vanselous, H., Petersen, P.B.: Covering the vibrational spectrum with microjoule mid-infrared supercontinuum pulses in nonlinear optical applications. J. Opt. Soc. Am. B 34, 1163–1168 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Mouawad, O., Béjot, P., Mathey, P., Froidevaux, P., Lemière, A., Billard, F., Kibler, B., Désévédavy, F., Gadret, G., Jules, J.-C., Faucher, O., Smektala, F.: Expanding up to far-infrared filamentation-induced supercontinuum spanning in chalcogenide glasses. Appl. Phys. B 124, 182 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    Riedle, E., Bradler, M., Wenninger, M., Sailer, C.F., Pugliesi, I.: Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes. Faraday Discuss. 163, 139–158 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Ziolek, M., Naskrecki, R., Karolczak, J.: Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy. Opt. Commun. 241, 221–229 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    Kartazaev, V., Alfano, R.R.: Polarization properties of SC generated in CaF\(_2\). Opt. Commun. 281, 463–468 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    Johnson, P.J.M., Prokhorenko, V.I., Miller, R.J.D.: Stable UV to IR supercontinuum generation in calcium fluoride with conserved circular polarization states. Opt. Express 17, 21488–21496 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Tzankov, P., Buchvarov, I., Fiebig, T.: Broadband optical parametric amplification in the near UV-VIS. Opt. Commun. 203, 107–113 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    Wang, J., Zhang, Y., Shen, H., Jiang, Y., Wang, Z.: Spectral stability of supercontinuum generation in condensed mediums. Opt. Eng. 56, 076107 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    Buchvarov, I., Trifonov, A., Fiebig, T.: Toward an understanding of white-light generation in cubic media-polarization properties across the entire spectral range. Opt. Lett. 32, 1539–1541 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    Zeller, J., Jaspara, J., Rudolph, W., Sheik-Bahae, M.: Spectro-temporal characterization of a femtosecond white-light continuum by transient grating diffraction. Opt. Commun. 185, 133–137 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    Megerle, U., Pugliesi, I., Schriever, C., Sailer, C.F., Riedle, E.: Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground. Appl. Phys. B 96, 215–231 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Krebs, N., Pugliesi, I., Hauer, J., Riedle, E.: Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New. J. Phys. 15, 085016 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    Huber, R., Satzger, H., Zinth, W., Wachtveitl, J.: Noncollinear optical parametric amplifiers with output parameters improved by the applications of a white light continuum generated in CaF\(_2\). Opt. Commun. 194, 443–448 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    Dharmadhikari, A.K., Rajgara, F.A., Reddy, N.C.S., Sandhu, A.S., Mathur, D.: Highly efficient white light generation from barium fluoride. Opt. Express 12, 695–700 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    Dharmadhikari, A.K., Alti, K., Dharmadhikari, J.A., Mathur, D.: Control of the onset of filamentation in condensed media. Phys. Rev. A 76, 033811 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    Dharmadhikari, A.K., Rajgara, F.A., Mathur, D.: Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride. Appl. Phys. B 82, 575–583 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    Dharmadhikari, A.K., Dharmadhikari, J.A., Mathur, D.: Visualization of focusing-refocusing cycles during filamentation in BaF\(_2\). Appl. Phys. B 94, 259–263 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    Harth, A., Schultze, M., Lang, T., Binhammer, T., Rausch, S., Morgner, U.: Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR. Opt. Express 20, 3076–3081 (2012)Google Scholar
  65. 65.
    Liang, H., Krogen, P., Grynko, R., Novak, O., Chang, C.-L., Stein, G.J., Weerawarne, D., Shim, B., Kärtner, F.X., Hong, K.-H.: Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics. Opt. Lett. 40, 1069–1072 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    Dormidonov, A.E., Kompanets, V.O., Chekalin, S.V., Kandidov, V.P.: Giantically blue-shifted visible light in femtosecond mid-IR filament in fluorides. Opt. Express 23, 29202–29210 (2015)ADSCrossRefGoogle Scholar
  67. 67.
    Chekalin, S.V., Kompanets, V.O., Dormidonov, A.E., Zaloznaya, E.D., Kandidov, V.P.: Supercontinuum spectrum upon filamentation of laser pulses under conditions of strong and weak anomalous group velocity dispersion in transparent dielectrics. Quantum Electron. 47, 252–258 (2017)ADSCrossRefGoogle Scholar
  68. 68.
    Marcinkevičiūtė, A., Garejev, N., Šuminas, R., Tamošauskas, G., Dubietis, A.: A compact, self-compression-based sub-3 optical cycle source in the 3–4 \(\upmu \)m spectral range. J. Opt. 19, 105505 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    Kohl-Landgraf, J., Nimsch, J.-E., Wachtveitl, J.: LiF, an underestimated supercontinuum source in femtosecond transient absorption spectroscopy. Opt. Express 21, 17060–17065 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    Dormidonov, A.E., Kompanets, V.O., Chekalin, S.V., Kandidov, V.P.: Dispersion of the anti-stokes band in the spectrum of a light bullet of a femtosecond filament. JETP Lett. 104, 175–179 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    Chekalin, S.V., Kompanets, V.O., Dormidonov, A.E., Kandidov, V.P.: Influence of induced colour centres on the frequency-angular spectrum of a light bullet of mid-IR radiation in lithium fluoride. Quantum Electron. 47, 259–265 (2017)ADSCrossRefGoogle Scholar
  72. 72.
    Yang, Y., Bi, W., Li, X., Liao, M., Gao, W., Ohishi, Y., Fang, Y., Li, Y.: Ultrabroadband supercontinuum generation through filamentation in a lead fluoride crystal. J. Opt. Soc. Am. B 36, A1–A7 (2019)ADSCrossRefGoogle Scholar
  73. 73.
    Reed, M.K., Steiner-Shepard, M.K., Negus, D.K.: Widely tunable femtosecond optical parametric amplifier at 250 kHz with a Ti:sapphire regenerative amplifier. Opt. Lett. 19, 1855–1857 (1994)ADSCrossRefGoogle Scholar
  74. 74.
    Yakovlev, V.V., Kohler, B., Wilson, K.R.: Broadly tunable 30-fs pulses produced by optical parametric amplification. Opt. Lett. 19, 2000–2002 (1994)Google Scholar
  75. 75.
    Reed, M.K., Steiner-Shepard, M.K., Armas, M.S., Negus, D.K.: Microjoule-energy ultrafast optical parametric amplifiers. J. Opt. Soc. Am. B 12, 2229–2236 (1995)ADSCrossRefGoogle Scholar
  76. 76.
    Manzoni, C., Cerullo, G.: Design criteria for ultrafast optical parametric amplifiers. J. Opt. 18, 103501 (2016)ADSCrossRefGoogle Scholar
  77. 77.
    Bradler, M., Riedle, E.: Sub-20 fs \(\mu \)J-energy pulses tunable down to the near-UV from a 1 MHz Yb-fiber laser system. Opt. Lett. 39, 2588–2591 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    Bradler, M., Baum, P., Riedle, E.: Femtosecond continuum generation in bulk laser host materials with sub-\(\mu \)J pump pulses. Appl. Phys. B 97, 561–574 (2009)ADSCrossRefGoogle Scholar
  79. 79.
    Majus, D., Jukna, V., Pileckis, E., Valiulis, G., Dubietis, A.: Rogue-wave-like statistics in ultrafast white-light continuum generation in sapphire. Opt. Express 19, 16317–16323 (2011)ADSCrossRefGoogle Scholar
  80. 80.
    Majus, D., Dubietis, A.: Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study. J. Opt. Soc. Am. B 30, 994–999 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    Imran, T., Figueira, G.: Intensity-phase characterization of white-light continuum generated in sapphire by 280 fs laser pulses at 1053 nm. J. Opt. 14, 035201 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    Jukna, V., Galinis, J., Tamošauskas, G., Majus, D., Dubietis, A.: Infrared extension of femtosecond supercontinuum generated by filamentation in solid-state media. Appl. Phys. B 116, 477–483 (2014)ADSCrossRefGoogle Scholar
  83. 83.
    Budriūnas, R., Stanislauskas, T., Varanavičius, A.: Passively CEP-stabilized frontend for few cycle terawatt OPCPA system. J. Opt. 17, 094008 (2015)ADSCrossRefGoogle Scholar
  84. 84.
    Budriūnas, R., Stanislauskas, T., Adamonis, J., Aleknavičius, A., Veitas, G., Gadonas, D., Balickas, S., Michailovas, A., Varanavic̄ius, A.: 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate. Opt. Express 25, 5797–5806 (2017)Google Scholar
  85. 85.
    Kudarauskas, D., Tamošauskas, G., Vengris, M., Dubietis, A.: Filament-induced luminescence and supercontinuum generation in undoped, Yb-doped and Nd-doped YAG crystals. Appl. Phys. Lett. 112, 041103 (2018)ADSCrossRefGoogle Scholar
  86. 86.
    Fattahi, H., Wang, H., Alismail, A., Arisholm, G., Pervak, V., Azzeer, A.M., Krausz, F.: Near-PHz-bandwidth, phase-stable continua generated from a Yb:YAG thin-disk amplifier. Opt. Express 24, 24337–24346 (2016)ADSCrossRefGoogle Scholar
  87. 87.
    Rezvani, S.A., Suzuki, M., Malevich, P., Livache, C., De Montgolfier, J.V., Nomura, Y., Tsurumachi, N., Baltuška, A., Fuji, T.: Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm:YAP regenerative amplifier. Opt. Express 26, 29460–29470 (2018)ADSCrossRefGoogle Scholar
  88. 88.
    Silva, F., Austin, D.R., Thai, A., Baudisch, M., Hemmer, M., Faccio, D., Couairon, A., Biegert, J.: Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat. Commun. 3, 807 (2012)ADSCrossRefGoogle Scholar
  89. 89.
    Choudhuri, A., Chatterjee, G., Zheng, J., Hartl, I., Ruehl, A., Miller, R.J.D.: A spatio-spectral polarization analysis of 1 \(\upmu \)m-pumped bulk supercontinuum in a cubic crystal (YAG). Appl. Phys. B. 124, 103 (2018)ADSCrossRefGoogle Scholar
  90. 90.
    Ryba-Romanowski, W., Macalik, B., Strzȩp, A., Lisiecki, R., Solarz, P., Kowalski, R.M.: Spectral transformation of infrared ultrashort pulses in laser crystals. Opt. Mater. 36, 1745–1748 (2014)ADSCrossRefGoogle Scholar
  91. 91.
    Macalik, B., Kowalski, R.M., Ryba-Romanowski, W.: Spectral features of the Stokes part of supercontinuum generated by femtosecond light pulses in selected oxide crystals: a comparative study. Opt. Mater. 78, 396–401 (2018)ADSCrossRefGoogle Scholar
  92. 92.
    Kumar, R.S.S., Deepak, K.L.N., Rao, D.N.: Control of the polarization properties of the supercontinuum generation in a noncentrosymmetric crystal. Opt. Lett. 33, 1198–1200 (2008)ADSCrossRefGoogle Scholar
  93. 93.
    Kumar, R.S.S., Deepak, K.L.N., Rao, D.N.: Depolarization properties of the femtosecond supercontinuum generated in condensed media. Phys. Rev. A 78, 043818 (2008)ADSCrossRefGoogle Scholar
  94. 94.
    Yu, J., Jiang, H., Yang, H., Gong, Q.: Depolarization of white light generated by femtosecond laser pulse in KDP crystals. J. Opt. Soc. Am. B 28, 1566–1570 (2011)ADSCrossRefGoogle Scholar
  95. 95.
    Rolle, J., Bergé, L., Duchateau, G., Skupin, S.: Filamentation of ultrashort laser pulses in silica glass and KDP crystals: a comparative study. Phys. Rev. A 90, 023834 (2014)ADSCrossRefGoogle Scholar
  96. 96.
    Faccio, D., Di Trapani, P., Minardi, S., Bramati, A., Bragheri, F., Liberale, C., Degiorgio, V., Dubietis, A., Matijosius, A.: Far-field spectral characterization of conical emission and filamentation in Kerr media. J. Opt. Soc. Am. B 22, 862–869 (2005)ADSCrossRefGoogle Scholar
  97. 97.
    Wang, Y., Ni, H., Zhan, W., Yuan, J., Wang, R.: Supercontinuum and THz generation from Ni implanted LiNbO\(_3\) under 800 nm laser excitation. Opt. Commun. 291, 334–336 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    Vasa, P., Dota, K., Singh, M., Kushavah, D., Singh, B.P., Mathur, D.: Power- and polarization-dependent supercontinuum generation in \(\alpha \)-BaB\(_2\)O\(_4\) crystals by intense, near-infrared, femtosecond laser pulses. Phys. Rev. A 91, 053837 (2015)ADSCrossRefGoogle Scholar
  99. 99.
    Srinivas, N.K.M.N., Harsha, S.S., Rao, D.N.: Femtosecond supercontinuum generation in a quadratic nonlinear medium (KDP). Opt. Express 13, 3224–3229 (2005)ADSCrossRefGoogle Scholar
  100. 100.
    Kumar, R.S.S., Harsha, S.S., Rao, D.N.: Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation. Appl. Phys. B 86, 615–621 (2007)ADSCrossRefGoogle Scholar
  101. 101.
    Wang, L., Fan, Y.X., Zhu, H., Yan, Z.D., Zeng, H., Wang, H.-T., Zhu, S.N., Wang, Z.L.: Broadband colored-crescent generation in a single \(\beta \)-barium-borate crystal by intense femtosecond pulses. Phys. Rev. A 84, 063831 (2011)ADSCrossRefGoogle Scholar
  102. 102.
    Ali, S.A., Bisht, P.B., Nautiyal, A., Shukla, V., Bindra, K.S., Oak, S.M.: Conical emission in \(\beta \)-barium borate under femtosecond pumping with phase matching angles away from second harmonic generation. J. Opt. Soc. Am. B 27, 1751–1756 (2010)ADSCrossRefGoogle Scholar
  103. 103.
    Zhao, L., Zeng, X., Tong, L., Gao, Y., Liu, J., Ren, Y., Zhao, Y., Li, J.: Femtosecond supercontinuum generation and Čerenkov conical emission in periodically poled LiTaO\(_3\). Optik 156, 333–337 (2018)ADSCrossRefGoogle Scholar
  104. 104.
    Stegeman, G.I., Hagan, D.J., Torner, L.: \(\chi ^{(2)}\) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons. Opt. Quantum Electron. 28, 1691–1740 (1996)CrossRefGoogle Scholar
  105. 105.
    Wise, F.W., Moses, J.: Self-focusing and self-defocusing of femtosecond pulses with cascaded quadratic nonlinearities. Top. Appl. Phys. 114, 481–506 (2009)CrossRefGoogle Scholar
  106. 106.
    Zhou, B.B., Chong, A., Wise, F.W., Bache, M.: Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions. Phys. Rev. Lett. 109, 043902 (2012)ADSCrossRefGoogle Scholar
  107. 107.
    Bache, M., Guo, H., Zhou, B.: Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals. Opt. Mater. Express 3, 1647–1657 (2013)ADSCrossRefGoogle Scholar
  108. 108.
    Zhou, B., Guo, H., Bache, M.: Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal. Opt. Express. 23, 6924–6936 (2015)ADSCrossRefGoogle Scholar
  109. 109.
    Zhou, B., Bache, M.: Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal. Opt. Lett. 40, 4257–4260 (2015)ADSCrossRefGoogle Scholar
  110. 110.
    Viotti, A.-L., Lindberg, R., Zukauskas, A., Budriunas, R., Kucinskas, D., Stanislauskas, T., Laurell, F., Pasiskevicius, V.: Supercontinuum generation and soliton self-compression in \(\chi ^{(2)}\)-structured KTiOPO\(_4\). Optica 5, 711–717 (2018)CrossRefGoogle Scholar
  111. 111.
    Zhou, B., Bache, M.: Multiple-octave spanning mid-IR supercontinuum generation in bulk quadratic nonlinear crystals. APL Photon. 1, 050802 (2016)ADSCrossRefGoogle Scholar
  112. 112.
    Seidel, M., Xiao, X., Hussain, S.A., Arisholm, G., Hartung, A., Zawilski, K.T., Schunemann, P.G., Habel, F., Trubetskov, M., Pervak, V., Pronin, O., Krausz, F.: Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv. 4, eaaq1526 (2018)Google Scholar
  113. 113.
    Krupa, K., Labruyère, A., Tonello, A., Shalaby, B.M., Couderc, V., Baronio, F., Aceves, A.B.: Polychromatic filament in quadratic media: spatial and spectral shaping of light in crystals. Optica 2, 1058–1064 (2015)CrossRefGoogle Scholar
  114. 114.
    Šuminas, R., Tamošauskas, G., Jukna, V., Couairon, A., Dubietis, A.: Second-order cascading-assisted filamentation and controllable supercontinuum generation in birefringent crystals. Opt. Express 25, 6746–6756 (2017)ADSCrossRefGoogle Scholar
  115. 115.
    Šuminas, R., Tamošauskas, G., Valiulis, G., Dubietis, A.: Spatiotemporal light bullets and supercontinuum generation in \(\beta \)-BBO crystal with competing quadratic and cubic nonlinearities. Opt. Lett. 41, 2097–2100 (2016)ADSCrossRefGoogle Scholar
  116. 116.
    Valiulis, G., Jukna, V., Jedrkiewicz, O., Clerici, M., Rubino, E., Di Trapani, P.: Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation. Phys. Rev. A 83, 043834 (2011)ADSCrossRefGoogle Scholar
  117. 117.
    Zhou, B., Guo, H., Bache, M.: Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks. Phys. Rev. A 90, 013823 (2014)ADSCrossRefGoogle Scholar
  118. 118.
    Wang, H., Alismail, A., Barbiero, G., Wendl, M., Fattahi, H.: Cross-polarized, multi-octave supercontinuum generation. Opt. Lett. 42, 2595–2598 (2017)ADSCrossRefGoogle Scholar
  119. 119.
    Vicario, C., Monoszlai, B., Arisholm, G., Hauri, C.P.: Generation of 1.5-octave intense infrared pulses by nonlinear interactions in DAST crystal. J. Opt. 17, 094005 (2015)Google Scholar
  120. 120.
    Kessel, A., Trushin, S.A., Karpowicz, N., Skrobol, C., Klingebiel, S., Wandt, C., Karsch, S.: Generation of multi-octave spanning high-energy pulses by cascaded nonlinear processes in BBO. Opt. Express 24, 5628–5637 (2016)ADSCrossRefGoogle Scholar
  121. 121.
    Corkum, P.B., Ho, P.P., Alfano, R.R., Manassah, J.T.: Generation of infrared supercontinuum covering 3–14 \(\upmu \)m in dielectrics and semiconductors. Opt. Lett. 10, 624–626 (1985)ADSCrossRefGoogle Scholar
  122. 122.
    Pigeon, J.J., Tochitsky, S.Ya., Gong, C., Joshi, C.: Supercontinuum generation from 2 to 20 \(\upmu \)m in GaAs pumped by picosecond CO\(_2\) laser pulses. Opt. Lett. 39, 3246–3249 (2014)ADSCrossRefGoogle Scholar
  123. 123.
    Ashihara, S., Kawahara, Y.: Spectral broadening of mid-infrared femtosecond pulses in GaAs. Opt. Lett. 34, 3839–3841 (2009)ADSCrossRefGoogle Scholar
  124. 124.
    Lanin, A.A., Voronin, A.A., Stepanov, E.A., Fedotov, A.B., Zheltikov, A.M.: Frequency-tunable sub-two-cycle 60-MW-peak-power free-space waveforms in the mid-infrared. Opt. Lett. 39, 6430–6433 (2014)ADSCrossRefGoogle Scholar
  125. 125.
    Lanin, A.A., Voronin, A.A., Stepanov, E.A., Fedotov, A.B., Zheltikov, A.M.: Multioctave, 3–18 \(\upmu \)m sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid. Opt. Lett. 40, 974–977 (2015)ADSCrossRefGoogle Scholar
  126. 126.
    Durand, M., Houard, A., Lim, K., Durécu, A., Vasseur, O., Richardson, M.: Study of filamentation threshold in zinc selenide. Opt. Express 22, 5852–5858 (2014)ADSCrossRefGoogle Scholar
  127. 127.
    Mouawad, O., Béjot, P., Billard, F., Mathey, P., Kibler, B., Désévédavy, F., Gadret, G., Jules, J.-C., Faucher, O., Smektala, F.: Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy. Opt. Mater. 60, 355–358 (2016)ADSCrossRefGoogle Scholar
  128. 128.
    Baudrier-Raybaut, M., Haïdar, R., Kupecek, Ph., Lemasson, Ph., Rosencher, E.: Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432, 374–376 (2004)Google Scholar
  129. 129.
    Šuminas, R., Tamošauskas, G., Valiulis, G., Jukna, V., Couairon, A., Dubietis, A.: Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe. Appl. Phys. Lett. 110, 241106 (2017)ADSCrossRefGoogle Scholar
  130. 130.
    Archipovaite, G.M., Petit, S., Delagnes, J.-C., Cormier, E.: 100 kHz Yb-fiber laser pumped 3 \(\upmu \)m optical parametric amplifier for probing solid-state systems in the strong field regime. Opt. Lett. 42, 891–894 (2017)ADSCrossRefGoogle Scholar
  131. 131.
    Šuminas, R., Marcinkevičiūtė, A., Tamošauskas, G., Dubietis, A.: Even and odd harmonics-enhanced supercontinuum generation in zinc-blende semiconductors. J. Opt. Soc. Am. B 36, A22–A27 (2019)ADSCrossRefGoogle Scholar
  132. 132.
    Grynko, R.I., Nagar, G.C., Shim, B.: Wavelength-scaled laser filamentation in solids and plasma-assisted subcycle light-bullet generation in the long-wavelength infrared. Phys. Rev. A 98, 023844 (2018)ADSCrossRefGoogle Scholar
  133. 133.
    Kardaś, T.M., Ratajska-Gadomska, B., Gadomski, W., Lapini, A., Righini, R.: The role of stimulated Raman scattering in supercontinuum generation in bulk diamond. Opt. Express 21, 24201–24209 (2013)ADSCrossRefGoogle Scholar
  134. 134.
    Kartazaev, V., Alfano, R.R.: Supercontinuum generated in calcite with chirped femtosecond pulses. Opt. Lett. 32, 3293–3295 (2007)ADSCrossRefGoogle Scholar
  135. 135.
    Mareev, E., Bagratashvili, V., Minaev, N., Potemkin, F., Gordienko, V.: Generation of an adjustable multi-octave supercontinuum under near-IR filamentation in gaseous, supercritical, and liquid carbon dioxide. Opt. Lett. 41, 5760–5763 (2016)ADSCrossRefGoogle Scholar
  136. 136.
    Frolov, S.A., Trunov, V.I., Leshchenko, V.E., Pestryakov, E.V.: Multi-octave supercontinuum generation with IR radiation filamentation in transparent solid-state media. Appl. Phys. B 122, 124 (2016)ADSCrossRefGoogle Scholar
  137. 137.
    Marcinkevičiūtė, A., Tamošauskas, G., Dubietis, A.: Supercontinuum generation in mixed thallous halides KRS-5 and KRS-6. Opt. Mater. 78, 339–344 (2018)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laser Research CenterVilnius UniversityVilniusLithuania
  2. 2.Centre de Physique ThéoriqueEcole polytechnique, CNRS, Institut Polytechnique de ParisParisFrance

Personalised recommendations