Advertisement

General Practical Considerations

  • Audrius DubietisEmail author
  • Arnaud Couairon
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Supercontinuum generation in transparent bulk media results from femtosecond filamentation, which involves a complex interplay among linear (diffraction and GVD) and nonlinear effects (self-focusing, self-phase modulation, pulse-front steepening, generation of optical shocks, multiphoton absorption/ionization, free-electron plasma generation, etc.), which become coupled in space and time.

References

  1. 1.
    Brodeur, A., Chin, S.L.: Band-gap dependence of the ultrafast white-light continuum. Phys. Rev. Lett. 80, 4406–4409 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Brodeur, A., Chin, S.L.: Ultrafast white-light continuum generation and self-focusing in transparent condensed media. J. Opt. Soc. Am. B 16, 637–650 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Kolesik, M., Katona, G., Moloney, J.V., Wright, E.M.: Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation. Phys. Rev. Lett. 91, 043905 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Frolov, S.A., Trunov, V.I., Leshchenko, V.E., Pestryakov, E.V.: Multi-octave supercontinuum generation with IR radiation filamentation in transparent solid-state media. Appl. Phys. B 122, 124 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Dubietis, A., Tamošauskas, G., Šuminas, R., Jukna, V., Couairon, A.: Ultrafast supercontinuum generation in bulk condensed media (Review). Lith. J. Phys. 57, 113–157 (2017)CrossRefGoogle Scholar
  6. 6.
    Gallais, L., Commandré, M.: Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs. Appl. Opt. 53, A186–A196 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Mero, M., Liu, J., Rudolph, W., Ristau, D., Starke, K.: Scaling laws of femtosecond laser pulse induced breakdown in oxide films. Phys. Rev. B 71, 115109 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Gallais, L., Douti, D.-B., Commandré, M., Batavičiūtė, G., Pupka, E., Ščiuka, M., Smalakys, L., Sirutkaitis, V., Melninkaitis, A.: Wavelength dependence of femtosecond laser-induced damage threshold of optical materials. J. Appl. Phys. 117, 223103 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Ashcom, J.B., Gattass, R.R., Schaffer, C.B., Mazur, E.: Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica. J. Opt. Soc. Am. B 23, 2317–2322 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Nguyen, N.T., Saliminia, A., Liu, W., Chin, S.L., Valée, R.: Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses. Opt. Lett. 28, 1591–1593 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Kudarauskas, D., Tamošauskas, G., Vengris, M., Dubietis, A.: Filament-induced luminescence and supercontinuum generation in undoped, Yb-doped and Nd-doped YAG crystals. Appl. Phys. Lett. 112, 041103 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Jukna, V., Garejev, N., Tamošauskas, G., Dubietis, A.: Role of external focusing geometry in supercontinuum generation in bulk solid-state media. J. Opt. Soc. Am. B 36, A54–A60 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    Dharmadhikari, A.K., Rajgara, F.A., Mathur, D.: Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride. Appl. Phys. B 82, 575–583 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Potemkin, F.V., Mareev, E.I., Smetanina, E.O.: Influence of wavefront curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water. Phys. Rev. A 97, 033801 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Jukna, V., Galinis, J., Tamošauskas, G., Majus, D., Dubietis, A.: Infrared extension of femtosecond supercontinuum generated by filamentation in solid-state media. Appl. Phys. B 116, 477–483 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Bradler, M., Baum, P., Riedle, E.: Femtosecond continuum generation in bulk laser host materials with sub-\(\upmu \)J pump pulses. Appl. Phys. B 97, 561–574 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Megerle, U., Pugliesi, I., Schriever, C., Sailer, C.F., Riedle, E.: Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground. Appl. Phys. B 96, 215–231 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Majus, D., Dubietis, A.: Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study. J. Opt. Soc. Am. B 30, 994–999 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Majus, D., Jukna, V., Pileckis, E., Valiulis, G., Dubietis, A.: Rogue-wave-like statistics in ultrafast white-light continuum generation in sapphire. Opt. Express 19, 16317–16323 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Bradler, M., Riedle, E.: Temporal and spectral correlations in bulk continua and improved use in transient spectroscopy. J. Opt. Soc. Am. B 31, 1465–1475 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    van de Walle, A., Hanna, M., Guichard, F., Zaouter, Y., Thai, A., Forget, N., Georges, P.: Spectral and spatial full-bandwidth correlation analysis of bulk-generated supercontinuum in the mid-infrared. Opt. Lett. 40, 673–675 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, J., Zhang, Y., Shen, H., Jiang, Y., Wang, Z.: Spectral stability of supercontinuum generation in condensed mediums. Opt. Eng. 56, 076107 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Mlejnek, M., Wright, E.M., Moloney, J.V.: Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382–384 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Jarnac, A., Tamošauskas, G., Majus, D., Houard, A., Mysyrowicz, A., Couairon, A., Dubietis, A.: Whole life cycle of femtosecond ultraviolet filaments in water. Phys. Rev. A 89, 033809 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Wu, Z.X., Jiang, H.B., Luo, L., Guo, H.C., Yang, H., Gong, Q.H.: Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica. Opt. Lett. 27, 448–450 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Liu, W., Chin, S.L., Kosareva, O., Golubtsov, I.S., Kandidov, V.P.: Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol). Opt. Commun. 225, 193–209 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Dharmadhikari, A.K., Dharmadhikari, J.A., Mathur, D.: Visualization of focusing-refocusing cycles during filamentation in BaF\(_2\). Appl. Phys. B 94, 259–263 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Chekalin, S.V., Dokukina, A.E., Dormidonov, A.E., Kompanets, V.O., Smetanina, E.O., Kandidov, V.P.: Light bullets from a femtosecond filament. J. Phys. B 48, 094008 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Kuznetsov, A.V., Kompanets, V.O., Dormidonov, A.E., Chekalin, S.V., Shlenov, S.A., Kandidov, V.P.: Periodic colour-centre structure formed under filamentation of mid-IR femtosecond laser radiation in a LiF crystal. Quantum Electron. 46, 379–386 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Gražulevičiūtė, I., Šuminas, R., Tamošauskas, G., Couairon, A., Dubietis, A.: Carrier-envelope phase-stable spatiotemporal light bullets. Opt. Lett. 40, 3719–3722 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Dharmadhikari, A.K., Rajgara, F.A., Mathur, D.: Depolarization of white light generated by ultrashort laser pulses in optical media. Opt. Lett. 31, 2184–2186 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Kumar, R.S.S., Deepak, K.L.N., Rao, D.N.: Depolarization properties of the femtosecond supercontinuum generated in condensed media. Phys. Rev. A 78, 043818 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Bergé, L., Mauger, S., Skupin, S.: Multifilamentation of powerful optical pulses in silica. Phys. Rev. A 81, 013817 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Dubietis, A., Tamošauskas, G., Fibich, G., Ilan, B.: Multiple filamentation induced by input-beam ellipticity. Opt. Lett. 29, 1126–1128 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Majus, D., Jukna, V., Valiulis, G., Dubietis, A.: Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams. Phys. Rev. A 79, 033843 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Cook, K., Kar, A.K., Lamb, R.A.: White-light supercontinuum interference of self-focused filaments in water. Appl. Phys. Lett. 83, 3861–3863 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Corsi, C., Tortora, A., Bellini, M.: Generation of a variable linear array of phase-coherent supercontinuum sources. Appl. Phys. B 78, 299–304 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Schroeder, H., Liu, J., Chin, S.L.: From random to controlled small-scale filamentation in water. Opt. Express 12, 4768–4774 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Liu, L., Schroeder, H., Chin, S.L., Li, R., Xu, Z.: Ultrafast control of multiple filamentation by ultrafast laser pulses. Appl. Phys. Lett. 87, 161105 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Dharmadhikari, A.K., Rajgara, F.A., Mathur, D., Schroeder, H., Liu, J.: Efficient broadband emission from condensed media irradiated by low-intensity, unfocused, ultrashort laser light. Opt. Express 13, 8555–8564 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    Cook, K., McGeorge, R., Kar, A.K., Taghizadeh, M.R., Lamb, R.A.: Coherent array of white-light continuum filaments produced by diffractive microlenses. Appl. Phys. Lett. 86, 021105 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Camino, A., Hao, Z., Liu, X., Lin, J.: High spectral power femtosecond supercontinuum source by use of microlens array. Opt. Lett. 39, 747–750 (2014)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laser Research CenterVilnius UniversityVilniusLithuania
  2. 2.Centre de Physique ThéoriqueEcole polytechnique, CNRS, Institut Polytechnique de ParisParisFrance

Personalised recommendations