Femtosecond Filamentation in Solid-State Media

  • Audrius DubietisEmail author
  • Arnaud Couairon
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Each chapter should be preceded by an abstract (10–15 lines long) that summarizes the content. The abstract will appear online at and be available with unrestricted access. This allows unregistered users to read the abstract as a teaser for the complete chapter. As a general rule, the abstracts will not appear in the printed version of your book unless it is the style of your particular book or that of the series to which your book belongs.


  1. 1.
    Braun, A., Korn, G., Liu, X., Du, D., Squier, J., Mourou, G.: Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73–75 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Tzortzakis, S., Sudrie, L., Franco, M., Prade, B., Mysyrowicz, A., Couairon, A., Bergé, L.: Self-guided propagation of ultrashort IR laser pulses in fused silica. Phys. Rev. Lett. 87, 213902 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Hercher, M.: Laser-induced change in transparent media. J. Opt. Soc. Am. 54, 563 (1964)Google Scholar
  4. 4.
    Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–190 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Nibbering, E.T.J., Curley, P.F., Grillon, G., Prade, B.S., Franco, M.A., Salin, F., Mysyrowicz, A.: Conical emission from self-guided femtosecond pulses in air. Opt. Lett. 21, 62–64 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Yang, J., Mu, G.: Multi-dimensional observation of white-light filaments generated by femtosecond laser pulses in condensed medium. Opt. Express 15, 4943–4952 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Tzortzakis, S., Franco, M.A., André, Y.-B., Chiron, A., Lamouroux, B., Prade, B.S., Mysyrowicz, A.: Formation of a conducting channel in air by self-guided femtosecond laser pulses. Phys. Rev. E 60, R3505 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Minardi, S., Gopal, A., Tatarakis, M., Couairon, A., Tamošauskas, G., Piskarskas, R., Dubietis, A., Di Trapani, P.: Time-resolved refractive index and absorption mapping of light-plasma filaments in water. Opt. Lett. 33, 86–88 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Papazoglou, D.G., Tzortzakis, S.: In-line holography for the characterization of ultrafast laser filamentation in transparent media. Appl. Phys. Lett. 93, 041120 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Papazoglou, D.G., Tzortzakis, S.: Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation. Opt. Mater. Express 1, 625–632 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Courvoisier, F., Boutou, V., Kasparian, J., Salmon, E., Méjean, G., Yu, J., Wolf, J.-P.: Ultraintense light filaments transmitted through clouds. Appl. Phys. Lett. 83, 213–215 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Dubietis, A., Gaižauskas, E., Tamošauskas, G., Di Trapani, P.: Light filaments without self-channeling. Phys. Rev. Lett. 92, 253903 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Dubietis, A., Kučinskas, E., Tamošauskas, G., Gaižauskas, E., Porras, M.A., Di Trapani, P.: Self-reconstruction of light filaments. Opt. Lett. 29, 2893–2895 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Kolesik, M., Moloney, J.V.: Self-healing femtosecond light filaments. Opt. Lett. 29, 590–592 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Liu, W., Gravel, J.-F., Théberge, F., Becker, A., Chin, S.L.: Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air. Appl. Phys. B 80, 857–860 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, W., Thèberge, F., Arévalo, E., Gravel, J.-F., Becker, A., Chin, S.L.: Experiments and simulations on the energy reservoir effect in femtosecond light filaments. Opt. Lett. 30, 2602–2604 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)ADSCrossRefGoogle Scholar
  18. 18.
    Saari, P., Reivelt, K.: Evidence of X-shaped propagation-invariant localized light waves. Phys. Rev. Lett. 79, 4135–4138 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Lu, J.Y., Greenleaf, J.F.: Nondiffracting x waves-exact solutions for free-space scalar wave equation and their finite aperture realizations. IEEE Trans. Ultrasonics, Ferroelectr. Freq. Control 39, 19–31 (1992)Google Scholar
  20. 20.
    Porras, M.A., Parola, A., Faccio, D., Dubietis, A., Di Trapani, P.: Nonlinear unbalanced Bessel Beams: Stationary conical waves supported by nonlinear losses. Phys. Rev. Lett. 93, 153902 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Porras, M.A., Parola, A., Di Trapani, P.: Nonlinear unbalanced O waves: nonsolitary, conical light bullets in nonlinear dissipative media. J. Opt. Soc. Am. B 22, 1406–1413 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Conti, C., Trillo, S., Di Trapani, P., Valiulis, G., Piskarskas, A., Jedrkiewicz, O., Trull, J.: Nonlinear electromagnetic X waves. Phys. Rev. Lett. 90, 170406 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Polesana, P., Dubietis, A., Porras, M.A., Kučinskas, E., Faccio, D., Couairon, A., Di Trapani, P.: Near-field dynamics of ultrashort pulsed Bessel beams in media with Kerr nonlinearity. Phys. Rev. E 73, 056612 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Valiulis, G., Kilius, J., Jedrkiewicz, O., Bramati, A., Minardi, S., Conti, C., Trillo, S., Piskarskas, A., Di Trapani, P.: Space-time nonlinear compression and three-dimensional complex trapping in normal dispersion. In: OSA Trends in Optics and Photonics (TOPS), Technical Digest of the Quantum Electronics and Laser Science Conference (QELS 2001), vol. 57. Optical Society of America, Washington DC, pp. QPD1012 (2001)Google Scholar
  25. 25.
    Di Trapani, P., Valiulis, G., Piskarskas, A., Jedrkiewicz, O., Trull, J., Conti, C., Trillo, S.: Spontaneously generated X-shaped light bullets. Phys. Rev. Lett. 91, 093904 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Faccio, D., Couairon, A., Di Trapani, P.: Conical Waves, Filaments and Nonlinear Filamentation Optics Aracne Rome (2007)Google Scholar
  27. 27.
    Kandidov, V.P., Kosareva, O.G., Shlenov, S.A.: Influence of transient self-defocusing on the propagation of high-power femtosecond laser pulses in gases under ionisation conditions. Quant. Electron. 21, 971–977 (1994)Google Scholar
  28. 28.
    Mlejnek, M., Wright, E.M., Moloney, J.V.: Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382–384 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Chiron, A., Lamouroux, B., Lange, R., Ripoche, J.-F., Franco, M., Prade, B., Bonnaud, G., Riazuelo, G., Mysyrowicz, A.: Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases. Eur. Phys. J. D 6, 383–396 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    Kolesik, M., Moloney, J.V.: Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys. Rev. E 70, 036604 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Couairon, A., Brambilla, E., Corti, T., Majus, D., de O., Ramírez-Góngora, J., Kolesik, M.: Practitioner‘s guide to laser pulse propagation models and simulation. Eur. Phys. J. Special Topics 199, 5–76 (2011)Google Scholar
  32. 32.
    Brabec, T., Krausz, F.: Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3282–3285 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    Couairon, A., Kosareva, O.G., Panov, N.A., Shipilo, D.E., Andreeva, V.A., Jukna, V., Nesa, F.: Propagation equation for tight-focusing by a parabolic mirror. Opt. Express 23, 31240–31252 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Husakou, A.V., Herrmann, J.: Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Kolesik, M., Moloney, J.V.: Modeling and simulation techniques in extreme nonlinear optics of gaseous and condensed media. Rep. Prog. Phys. 77, 016401 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Chernev, P., Petrov, V.: Self-focusing of light pulses in the presence of normal group-velocity dispersion. Opt. Lett. 17, 172–174 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    Rothenberg, J.E.: Pulse splitting during self-focusing in normally dispersive media. Opt. Lett. 17, 583–585 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    Rothenberg, J.E.: Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses. Opt. Lett. 17, 1340–1342 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    Fibich, G., Papanicolaou, G.C.: Self-focusing in the presence of small time dispersion and nonparaxiality. Opt. Lett. 22, 1397–1399 (1997)CrossRefGoogle Scholar
  40. 40.
    Ranka, J.K., Schirmer, R.W., Gaeta, A.L.: Observation of pulse splitting in nonlinear dispersive media. Phys. Rev. Lett. 77, 3783–3786 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    Ranka, J.K., Gaeta, A.L.: Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses. Opt. Lett. 23, 534–536 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Diddams, S.A., Eaton, H.K., Zozulya, A.A., Clement, T.S.: Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media. Opt. Lett. 23, 379–381 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    Zozulya, A.A., Diddams, S.A., Van Engen, A.G., Clement, T.S.: Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation. Phys. Rev. Lett. 82, 1430–1433 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    Gaeta, A.L.: Catastrophic collapse of ultrashort pulses. Phys. Rev. Lett. 84, 3582–3585 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    Gaeta, A.L.: Spatial and temporal dynamics of collapsing ultrashort laser pulses. Top. Appl. Phys. 114, 399–412 (2009)CrossRefGoogle Scholar
  46. 46.
    Silberberg, Y.: Collapse of optical pulses. Opt. Lett. 15, 1282–1284 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    Moll, K.D., Gaeta, A.L.: Role of dispersion in multiple-collapse dynamics. Opt. Lett. 29, 995–997 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    Liu, J., Li, R., Xu, Z.: Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion. Phys. Rev. A 74, 043801 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    Chekalin, S.V., Kompanets, V.O., Smetanina, E.O., Kandidov, V.P.: Light bullets and supercontinuum spectrum during femtosecond pulse filamentation under conditions of anomalous group-velocity dispersion in fused silica. Quantum Electron. 43, 326–331 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Durand, M., Jarnac, A., Houard, A., Liu, Y., Grabielle, S., Forget, N., Durécu, A., Couairon, A., Mysyrowicz, A.: Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids: a new regime of filamentation. Phys. Rev. Lett. 110, 115003 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    Saliminia, A., Chin, S.L., Vallée, R.: Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 \(\upmu \)m. Opt. Express 13, 5731–5738 (2005)Google Scholar
  52. 52.
    Silva, F., Austin, D.R., Thai, A., Baudisch, M., Hemmer, M., Faccio, D., Couairon, A., Biegert, J.: Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nature Commun. 3, 807 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Smetanina, E.O., Kompanets, V.O., Dormidonov, A.E., Chekalin, S.V., Kandidov, V.P.: Light bullets from near-IR filament in fused silica. Laser Phys. Lett. 10, 105401 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    Majus, D., Tamošauskas, G., Gražulevičiūtė, I., Garejev, N., Lotti, A., Couairon, A., Faccio, D., Dubietis, A.: Nature of spatiotemporal light bullets in bulk Kerr media. Phys. Rev. Lett. 112, 193901 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    Gražulevičiūtė, I., Šuminas, R., Tamošauskas, G., Couairon, A., Dubietis, A.: Carrier-envelope phase-stable spatiotemporal light bullets. Opt. Lett. 40, 3719–3722 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    Chekalin, S.V., Dokukina, A.E., Dormidonov, A.E., Kompanets, V.O., Smetanina, E.O., Kandidov, V.P.: Light bullets from a femtosecond filament. J. Phys. B 48, 094008 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    Šuminas, R., Tamošauskas, G., Valiulis, G., Dubietis, A.: Spatiotemporal light bullets and supercontinuum generation in \(\beta \)-BBO crystal with competing quadratic and cubic nonlinearities. Opt. Lett. 41, 2097–2100 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    Porras, M.A., Parola, A., Faccio, D., Couairon, A., Di Trapani, P.: Light-filament dynamics and the spatiotemporal instability of the Townes profile. Phys. Rev. A 76, 011803(R) (2007)ADSCrossRefGoogle Scholar
  59. 59.
    Couairon, A., Gaižauskas, E., Faccio, D., Dubietis, A., Di Trapani, P.: Nonlinear X-wave formation by femtosecond filamentation in Kerr media. Phys. Rev. E 73, 016608 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    Gražulevičiūtė, I., Garejev, N., Majus, D., Jukna, V., Tamošauskas, G., Dubietis, A.: Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion. J. Opt. 18, 025502 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    Kolesik, M., Katona, G., Moloney, J.V., Wright, E.M.: Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation. Phys. Rev. Lett. 91, 043905 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    Kolesik, M., Katona, G., Moloney, J.V., Wright, E.M.: Theory and simulation of supercontinuum generation in transparent bulk media. Appl. Phys. B 77, 185–195 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    Kolesik, M., Wright, E.M., Moloney, J.V.: Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media. Opt. Express 13, 10729–10741 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    Faccio, D., Di Trapani, P., Minardi, S., Bramati, A., Bragheri, F., Liberale, C., Degiorgio, V., Dubietis, A., Matijosius, A.: Far-field spectral characterization of conical emission and filamentation in Kerr media. J. Opt. Soc. Am. B 22, 862–869 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    Porras, M.A., Dubietis, A., Kučinskas, E., Bragheri, F., Degiorgio, V., Couairon, A., Faccio, D., Di Trapani, P.: From X- to O-shaped spatiotemporal spectra of light filaments in water. Opt. Lett. 30, 3398–3400 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    Faccio, D., Averchi, A., Lotti, A., Kolesik, M., Moloney, J.V., Couairon, A., Di Trapani, P.: Generation and control of extreme blueshifted continuum peaks in optical Kerr media. Phys. Rev. A 78, 033825 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    Faccio, D., Clerici, M., Averchi, A., Lotti, A., Jedrkiewicz, O., Dubietis, A., Tamošauskas, G., Couairon, A., Bragheri, F., Papazoglou, D., Tzortzakis, S., Di Trapani, P.: Few-cycle laser-pulse collapse in Kerr media: The role of group-velocity dispersion and X-wave formation. Phys. Rev. A 78, 033826 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    Kolesik, M., Wright, E.M., Moloney, J.V.: Dynamic nonlinear X waves for femtosecond pulse propagation in water. Phys. Rev. Lett. 92, 253901 (2004)ADSCrossRefGoogle Scholar
  69. 69.
    Gražulevičiūtė, I., Tamošauskas, G., Jukna, V., Couairon, A., Faccio, D., Dubietis, A.: Self-reconstructing spatiotemporal light bullets. Opt. Express 22, 30613–30622 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    Faccio, D., Porras, M.A., Dubietis, A., Bragheri, F., Couairon, A., Di Trapani, P.: Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses. Phys. Rev. Lett. 96, 193901 (2006)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laser Research CenterVilnius UniversityVilniusLithuania
  2. 2.Centre de Physique ThéoriqueEcole polytechnique, CNRS, Institut Polytechnique de ParisParisFrance

Personalised recommendations