Governing Physical Effects

  • Audrius DubietisEmail author
  • Arnaud Couairon
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


During the last two decades, significant progress has been accomplished in the development of optical fibers for the generation of ultrabroadband high-brightness spectra through supercontinuum (SC) generation, see e.g., [1]. The nonlinear propagation dynamics of the optical pulse in a fiber is essentially one-dimensional since single-mode propagation over broad wavelength ranges is desired to ensure good guidance properties and high nonlinearity over extended lengths.


  1. 1.
    Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Alfano, R.R., Shapiro, L.: Emission in the region 4000 to 7000 Å via four photon coupling in glass. Phys. Rev. Lett. 24, 584–587 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    Alfano, R.R., Shapiro, L.: Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    Chin, S.L., Hosseini, S.A., Liu, W., Luo, Q., Thberge, F., Aközbek, N., Becker, A., Kandidov, V.P., Kosareva, O.G., Schroeder, H.: The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges. Can. J. Phys. 83, 863–905 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Couairon, A., Mysyrowicz, A.: Femtoseconmd filamentation in transparent media. Phys. Rep. 441, 47–190 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Kandidov, V.P., Shlenov, S.A., Kosareva, O.G.: Filamentation of high-power femtosecond laser radiation. Quantum Electron. 39, 205–228 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Braun, A., Korn, G., Liu, X., Du, D., Squier, J., Mourou, G.: Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73–75 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)ADSCrossRefGoogle Scholar
  10. 10.
    Porras, M.A., Parola, A., Faccio, D., Couairon, A., Di Trapani, P.: Light-filament dynamics and the spatiotemporal instability of the townes profile. Phys. Rev. A 76, 011803(R) (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Marburger, J.H.: Self-focusing: theory. Prog. Quantum Electron. 4, 35–110 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    Dawes, E.L., Marburger, J.H.: Computer studies in self-focusing. Phys. Rev. 179, 862–868 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    Dubietis, A., Couairon, A., Kučinskas, E., Tamošauskas, G., Gaižauskas, E., Faccio, D., Di Trapani, P.: Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water. Appl. Phys. B 84, 439–446 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Kasparian, J., Sauerbrey, R., Chin, S.L.: The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 71, 877–879 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Brodeur, A., Chin, S.L.: Band-gap dependence of the ultrafast white-light continuum. Phys. Rev. Lett. 80, 4406–4409 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Brodeur, A., Chin, S.L.: Ultrafast white-light continuum generation and self-focusing in transparent condensed media. J. Opt. Soc. Am. B 16, 637–650 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Sheik-Bahae, M., Hagan, D.J., Van Stryland, E.W.: Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96–99 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    Šiaulys, N., Melninkaitis, A., Dubietis, A.: In situ study of two interacting femtosecond filaments in sapphire. Opt. Lett. 40, 2285–2288 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Mlejnek, M., Wright, E.M., Moloney, J.V.: Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382–384 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Kiran, P.P., Bagchi, S., Arnold, C.L., Krishnan, S.R., Kumar, G.R., Couairon, A.: Filamentation without intensity clamping. Opt. Express 18, 21504–21510 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Liu, W., Petit, S., Becker, A., Aközbek, N., Bowden, C.M., Chin, S.L.: Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun. 202, 189–197 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Weber, M.J.: Handbook of Optical Materials. CRC Press, London (2003)Google Scholar
  23. 23.
  24. 24.
    Kolesik, M., Katona, G., Moloney, J.V., Wright, E.M.: Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation. Phys. Rev. Lett. 91, 043905 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Kolesik, M., Katona, G., Moloney, J.V., Wright, E.M.: Theory and simulation of supercontinuum generation in transparent bulk media. Appl. Phys. B 77, 185–195 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Kolesik, M., Wright, E.M., Moloney, J.V.: Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media. Opt. Express 13, 10729–10741 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    DeMartini, F., Townes, C.H., Gustafson, T.K., Kelley, P.L.: Self-steepening of light pulses. Phys. Rev. 164, 312–323 (1967)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laser Research CenterVilnius UniversityVilniusLithuania
  2. 2.Centre de Physique ThéoriqueEcole polytechnique, CNRS, Institut Polytechnique de ParisParisFrance

Personalised recommendations