Advertisement

Introduction

  • Audrius DubietisEmail author
  • Arnaud Couairon
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Supercontinuum (SC) generation is one of the most spectacular and visually perceptible effects produced by the nonlinear propagation of intense ultrashort laser pulse in a transparent medium.

References

  1. 1.
    Alfano, R.R., Shapiro, L.: Emission in the region 4000 to 7000 Å via four photon coupling in glass. Phys. Rev. Lett. 24, 584–587 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    Alfano, R.R., Shapiro, L.: Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    Alfano, R.R. (ed.): The Supercontinuum Laser Source. Springer (2006)Google Scholar
  4. 4.
    Dubietis, A., Tamošauskas, G., Šuminas, R., Jukna, V., Couairon, A.: Ultrafast supercontinuum generation in bulk condensed media (Review). Lith. J. Phys. 57, 113–157 (2017)CrossRefGoogle Scholar
  5. 5.
    Chin, S.L., Hosseini, S.A., Liu, W., Luo, Q., Thberge, F., Aközbek, N., Becker, A., Kandidov, V.P., Kosareva, O.G., Schroeder, H.: The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges. Can. J. Phys. 83, 863–905 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–190 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Kasparian, J., Wolf, J.-P.: Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466–493 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Kandidov, V.P., Shlenov, S.A., Kosareva, O.G.: Filamentation of high-power femtosecond laser radiation. Quantum Electron. 39, 205–228 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Chin, S.L.: Femtosecond Laser Filamentation. Springer (2010)Google Scholar
  10. 10.
    Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Fork, R.L., Shank, C.V., Hirlimann, C., Yen, R., Tomlinson, W.J.: Femtosecond white-light continuum pulses. Opt. Lett. 8, 1–3 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    Braun, A., Korn, G., Liu, X., Du, D., Squier, J., Mourou, G.: Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73–75 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Wittmann, M., Penzkofer, A.: Spectral supebroadening of femtosecond laser pulses. Opt. Commun. 126, 308–317 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    Spence, D.E., Kean, P.N., Sibbett, W.: 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42–44 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    Norris, T.B.: Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation. Opt. Lett. 17, 1009–1011 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    Backus, S., Durfee, C.G., Murnane, M.M., Kapteyn, H.C.: High power ultrafast lasers. Rev. Sci. Instr. 69, 1207–1223 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Brodeur, A., Chin, S.L.: Band-gap dependence of the ultrafast white-light continuum. Phys. Rev. Lett. 80, 4406–4409 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Brodeur, A., Chin, S.L.: Ultrafast white-light continuum generation and self-focusing in transparent condensed media. J. Opt. Soc. Am. B 16, 637–650 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Bradler, M., Baum, P., Riedle, E.: Femtosecond continuum generation in bulk laser host materials with sub-\(\mu \)J pump pulses. Appl. Phys. B 97, 561–574 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Cerullo, G., De Silvestri, S.: Ultrafast optical parametric amplifiers. Rev. Sci. Instr. 74, 1–18 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Wilhelm, T., Piel, J., Riedle, E.: Sub-20-fs pulses tunable across the visible from a blue-pumped single pass noncollinear parametric converter. Opt. Lett. 22, 1494–1496 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    Brida, D., Manzoni, C., Cirmi, G., Marangoni, M., Bonora, S., Villoresi, P., De Silvestri, S., Cerullo, G.: Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers. J. Opt. 12, 013001 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Dubietis, A., Jonušauskas, G., Piskarskas, A.: Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 88, 437–440 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    Dubietis, A., Butkus, R., Piskarskas, A.P.: Trends in chirped pulse optical parametric amplification. IEEE J. Sel. Topics Quantum Electron. 12, 163–172 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Witte, S., Eikema, K.S.E.: Ultrafast optical parametric chirped-pulse amplification. IEEE J. Sel. Topics Quantum Electron. 18, 296–307 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Vaupel, A., Bodnar, N., Webb, B., Shah, L., Richardson, M.: Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification. Opt. Eng. 53, 051507 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Budriūnas, R., Stanislauskas, T., Adamonis, J., Aleknavičius, A., Veitas, G., Gadonas, D., Balickas, S., Michailovas, A., Varanavic̄ius, A.: 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate. Opt. Express 25, 5797–5806 (2017)Google Scholar
  29. 29.
    Rigaud, P., van de Walle, A., Hanna, M., Forget, N., Guichard, F., Zaouter, Y., Guesmi, K., Druon, F., Georges, P.: Supercontinuum-seeded few-cycle midinfrared OPCPA system. Opt. Express 24, 26494–26502 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Pires, H., Baudisch, M., Sanchez, D., Hemmer, M., Biegert, J.: Ultrashort pulse generation in the mid-IR. Prog. Quantum Electron. 43, 1–30 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Silva, F., Austin, D.R., Thai, A., Baudisch, M., Hemmer, M., Faccio, D., Couairon, A., Biegert, J.: Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nature Commun. 3, 807 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Couairon, A., Jukna, V., Darginavičius, J., Majus, D., Garejev, N., Gražulevičiūtė, I., Valiulis, G., Tamošauskas, G., Dubietis, A., Silva, F., Austin, D.R., Hemmer, M., Baudisch, M., Thai, A., Biegert, J., Faccio, D., Jarnac, A., Houard, A., Liu, Y., Mysyrowicz, A., Grabielle, S., Forget, N., Durécu, A., Durand, M., Lim, K., McKee, E., Baudelet, M., Richardson, M.: Filamentation and pulse self-compression in the anomalous dispersion region of glasses, in Laser Filamentation, eds, pp. 147–165. CRM Series in Mathematical Physics (Springer, A. D. Bandrauk et al (2016)Google Scholar
  33. 33.
    Chekalin, S.V., Dormidonov, A.E., Kompanets, V.O., Zaloznaya, E.D., Kandidov, V.P.: Light bullet supercontinuum. J. Opt. Soc. Am. B 36, A43–A53 (2019)ADSCrossRefGoogle Scholar
  34. 34.
    Fattahi, H., Barros, H.G., Gorjan, M., Nubbemeyer, T., Alsaif, B., Teisset, C.Y., Schultze, M., Prinz, S., Haefner, M., Ueffing, M., Alismail, A., Vámos, L., Schwarz, A., Pronin, O., Brons, J., Geng, X.T., Arisholm, G., Ciappina, M., Yakovlev, V.S., Kim, D.-E., Azzeer, A.M., Karpowicz, N., Sutter, D., Major, Z., Metzger, T., Krausz, F.: Third-generation femtosecond technology. Optica 1, 45–63 (2014)CrossRefGoogle Scholar
  35. 35.
    Zheltikov, A.: Multioctave supercontinua and subcycle lightwave electronics. J. Opt. Soc. Am. B 36, A168–A182 (2019)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laser Research CenterVilnius UniversityVilniusLithuania
  2. 2.Centre de Physique ThéoriqueEcole polytechnique, CNRS, Institut Polytechnique de ParisParisFrance

Personalised recommendations