Advertisement

Trident Snake Robot Motion Simulation in V-Rep

  • Roman Byrtus
  • Jana VechetováEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)

Abstract

We present a simulation of a trident snake robot motion in two local control models, the original one and its nilpotent approximation. More precisely, we derive the control system from the kinematics of a trident snake robot, calculate its nilpotent approximation and compare these two models by simulating their local motion planning in software V-Rep.

Keywords

Non–holonomic kinematics Local control Snake robot Nilpotent approximation 

Notes

Acknowledgement

The first author was supported by a grant of the Czech Science Foundation (GAČR) no. 17–21360S. The second author was supported by a grant no. FSI-S-17-4464.

References

  1. 1.
    Coppelia Robotics: V-REP User Manual. http://www.coppeliarobotics.com/helpFiles/
  2. 2.
    Ishikawa, M.: Trident snake robot: locomotion analysis and control. In: IFAC Proceeding Volumes, pp. 895–900 (2004)Google Scholar
  3. 3.
    Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning. Springer, New York (2014).  https://doi.org/10.1007/978-3-319-08690-3CrossRefGoogle Scholar
  4. 4.
    Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27(1), 621–632 (2017).  https://doi.org/10.1007/s00006-016-0695-5MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric control of the trident snake robot based on CGA. Adv. Appl. Clifford Algebr. 27(1), 633–645 (2017).  https://doi.org/10.1007/s00006-016-0693-7MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Nilpotent approximation of a trident snake robot controlling distribution. Kybernetika 53, 1118–1130 (2017).  https://doi.org/10.14736/kyb-2017-6-1118MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liljebäck, P., Pettersen, K.Y., Stavdahl, O., Gravdahl, J.T.: Snake Robots, Modelling, Mechatronics, and Control. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-2996-7CrossRefGoogle Scholar
  8. 8.
    Murray, R.M., Zexiang, L., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)Google Scholar
  9. 9.
    Návrat, A., Vašík, P.: On geometric control models of a robotic snake. Note di Matematica 37, 119–129 (2017).  https://doi.org/10.1285/i15900932v37suppl1p119MathSciNetCrossRefGoogle Scholar
  10. 10.
    Paszuk, D., Tchon, K., Pietrowska, Z.: Motion planning of the trident snake robot equipped with passive or active wheels. Bull. Polish Acad. Sci. Techn. Sci. 60(3), 547–555 (2009).  https://doi.org/10.2478/v10175-012-0067-9CrossRefGoogle Scholar
  11. 11.
    Pietrowska, Z., Tchon, K.: Dynamics and motion planning of trident snake robot. J. Intell. Robotic Syst. 75, 17–28 (2014).  https://doi.org/10.1007/s10846-013-9858-yCrossRefGoogle Scholar
  12. 12.
    Selig, J.M.: Geometric Fundamentals of Robotics. Monographs in Computer Science. Springer, New York (2004).  https://doi.org/10.1007/b138859CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations