Advertisement

Route Planning for Teams of Unmanned Aerial Vehicles Using Dubins Vehicle Model with Budget Constraint

  • David ZahrádkaEmail author
  • Robert Pěnička
  • Martin Saska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)

Abstract

In this paper, we propose Greedy Randomized Adaptive Search Procedure (GRASP) with Path Relinking extension for a solution of a novel problem formulation, the Dubins Team Orienteering Problem with Neighborhoods (DTOPN). The DTOPN is a variant of the Orienteering Problem (OP). The goal is to maximize collected reward from a close vicinity of given target locations, each with predefined reward, using multiple curvature-constrained vehicles, such as fixed-wing aircraft or VTOL UAVs with constant forward speed, each limited by route length. This makes it a very useful routing problem for scenarios using multiple UAVs for data collection, mapping, surveillance, and reconnaissance. The proposed method is verified on existing benchmark instances and by real experiments with a group of three fully-autonomous hexarotor UAVs that were used to compare the DTOPN with similar problem formulations and show the benefit of the introduced DTOPN.

Keywords

Route planning Dubins team orienteering problem with neighbourhoods DTOPN Unmanned Aerial Vehicles Mapping Data collection Inspection Reconnaissance Surveillance 

Notes

Acknowledgment

Presented paper has been supported by the Czech Science Foundation (GAČR) under research project No. 17-16900Y and by OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated. Support of the Grant Agency of the Czech Technical University in Prague No. SGS17/187/OHK3/3T/13 is gratefully acknowledged.

References

  1. 1.
    Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering problem. J. Heuristics 13(1), 49–76 (2007)CrossRefGoogle Scholar
  2. 2.
    Baca, T., Loianno, G., Saska, M.: Embedded model predictive control of unmanned micro aerial vehicles. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 992–997. IEEE (2016)Google Scholar
  3. 3.
    Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bouly, H., Dang, D.C., Moukrim, A.: A memetic algorithm for the team orienteering problem. 4or 8(1), 49–70 (2010)Google Scholar
  5. 5.
    Butt, S.E., Cavalier, T.M.: A heuristic for the multiple tour maximum collection problem. Comput. Oper. Res. 21(1), 101–111 (1994)CrossRefGoogle Scholar
  6. 6.
    Campos, V., Martí, R., Sánchez-Oro, J., Duarte, A.: Grasp with path relinking for the orienteering problem. J. Oper. Res. Soc. 65(12), 1800–1813 (2014)CrossRefGoogle Scholar
  7. 7.
    Chao, I.M., Golden, B.L., Wasil, E.A.: A fast and effective heuristic for the orienteering problem. Eur. J. Oper. Res. 88(3), 475–489 (1996)CrossRefGoogle Scholar
  8. 8.
    Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J. Oper. Res. 88(3), 464–474 (1996).  https://doi.org/10.1016/0377-2217(94)00289-4. http://www.sciencedirect.com/science/article/pii/0377221794002894CrossRefGoogle Scholar
  9. 9.
    Dang, D.-C., El-Hajj, R., Moukrim, A.: A branch-and-cut algorithm for solving the team orienteering problem. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 332–339. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38171-3_23CrossRefGoogle Scholar
  10. 10.
    Dang, D.C., Guibadj, R.N., Moukrim, A.: An effective pso-inspired algorithm for the team orienteering problem. Eur. J. Oper. Res. 229(2), 332–344 (2013)CrossRefGoogle Scholar
  11. 11.
    Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 2, pp. 1470–1477. IEEE (1999)Google Scholar
  12. 12.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  13. 13.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Faigl, J., Krajník, T., Chudoba, J., Přeučil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 993–998. IEEE (2013)Google Scholar
  15. 15.
    Faigl, J., Pěnička, R., Best, G.: Self-organizing map-based solution for the orienteering problem with neighborhoods. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 001315–001321. IEEE (2016)Google Scholar
  16. 16.
    Faigl, J., Pěnička, R.: On close enough orienteering problem with dubins vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5646–5652 (2017)Google Scholar
  17. 17.
    Faigl, J., Váňa, P., Saska, M., Báča, T., Spurnỳ, V.: On solution of the dubins touring problem. In: 2017 European Conference on Mobile Robots (ECMR), pp. 1–6. IEEE (2017)Google Scholar
  18. 18.
    Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Rob. Auton. Syst. 61(12), 1258–1276 (2013)CrossRefGoogle Scholar
  19. 19.
    Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist. 34(3), 307–318 (1987)CrossRefGoogle Scholar
  20. 20.
    Gulczynski, D.J., Heath, J.W., Price, C.C.: The close enough traveling salesman problem: a discussion of several heuristics. In: Alt, F.B., Fu, M.C., Golden, B.L. (eds.) Perspectives in Operations Research. Operations Research/Computer Science Interfaces Series, vol. 36, pp. 271–283. Springer, Boston (2006).  https://doi.org/10.1007/978-0-387-39934-8_16CrossRefGoogle Scholar
  21. 21.
    Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hodicky, J.: Autonomous systems operationalization gaps overcome by modelling and simulation. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 40–47. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47605-6_4CrossRefGoogle Scholar
  23. 23.
    Hodicky, J.: Standards to support military autonomous system life cycle. In: Březina, T., Jabłoński, R. (eds.) MECHATRONICS 2017. AISC, vol. 644, pp. 671–678. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-65960-2_83CrossRefGoogle Scholar
  24. 24.
    Hodicky, J., Prochazka, D.: Challenges in the implementation of autonomous systems into the battlefield. In: 2017 International Conference on Military Technologies (ICMT), pp. 743–747. IEEE (2017)Google Scholar
  25. 25.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972).  https://doi.org/10.1007/978-1-4684-2001-2_9CrossRefGoogle Scholar
  26. 26.
    Ke, L., Archetti, C., Feng, Z.: Ants can solve the team orienteering problem. Comput. Ind. Eng. 54(3), 648–665 (2008)CrossRefGoogle Scholar
  27. 27.
    Ke, L., Zhai, L., Li, J., Chan, F.T.: Pareto mimic algorithm: an approach to the team orienteering problem. Omega 61, 155–166 (2016)CrossRefGoogle Scholar
  28. 28.
    Krajník, T., et al.: A practical multirobot localization system. J. Intell. Rob. Syst. 76(3–4), 539–562 (2014)CrossRefGoogle Scholar
  29. 29.
    Lin, S.W.: Solving the team orienteering problem using effective multi-start simulated annealing. Appl. Soft Comput. 13(2), 1064–1073 (2013)CrossRefGoogle Scholar
  30. 30.
    Pěnička, R., Faigl, J., Váňa, P., Saska, M.: Dubins orienteering problem. IEEE Rob. Autom. Lett. 2(2), 1210–1217 (2017).  https://doi.org/10.1109/LRA.2017.2666261. http://mrs.felk.cvut.cz/icra17dopCrossRefGoogle Scholar
  31. 31.
    Pěnička, R., Faigl, J., Váňa, P., Saska, M.: Dubins orienteering problem with neighborhoods. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1555–1562, June 2017Google Scholar
  32. 32.
    Robinson, J.: On the hamiltonian game (a traveling salesman problem). Technical report, Rand Project Air Force, Arlington, VA (1949)Google Scholar
  33. 33.
    Saska, M., et al.: System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Auton. Robots 41(4), 919–944 (2017)CrossRefGoogle Scholar
  34. 34.
    Saska, M., Vonásek, V., Krajník, T., Přeučil, L.: Coordination and navigation of heterogeneous mav-ugv formations localized by a ‘hawk-eye’-like approach under a model predictive control scheme. Int. J. Rob. Res. 33(10), 1393–1412 (2014)CrossRefGoogle Scholar
  35. 35.
    Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for dubins’ vehicle. In: Proceedings of the 2005 American Control Conference, pp. 786–791. IEEE (2005)Google Scholar
  36. 36.
    Souffriau, W., Vansteenwegen, P., Berghe, G.V., Oudheusden, D.: A greedy randomised adaptive search procedure for the team orienteering problem. In: EU/MEeting, pp. 23–24 (2008)Google Scholar
  37. 37.
    Spurny, V., Baca, T., Saska, M.: Complex manoeuvres of heterogeneous MAV-UGV formations using a model predictive control. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 998–1003. IEEE (2016)Google Scholar
  38. 38.
    Thakur, D., et al.: Planning for opportunistic surveillance with multiple robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5750–5757. IEEE (2013)Google Scholar
  39. 39.
    Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9), 797–809 (1984)CrossRefGoogle Scholar
  40. 40.
    Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: A guided local search metaheuristic for the team orienteering problem. Eur. J. Oper. Res. 196(1), 118–127 (2009)CrossRefGoogle Scholar
  41. 41.
    Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Metaheuristics for tourist trip planning. In: Sörensen, K., Sevaux, M., Habenicht, W., Geiger, M. (eds.) Metaheuristics in the Service Industry. LNE, vol. 624, pp. 15–31. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00939-6_2CrossRefGoogle Scholar
  42. 42.
    Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Zahrádka
    • 1
    Email author
  • Robert Pěnička
    • 1
  • Martin Saska
    • 1
  1. 1.Faculty of Electrical EngineeringCzech Technical UniversityPragueCzech Republic

Personalised recommendations