Advertisement

P\(\mathrm {\Phi }\)SS: An Open-Source Experimental Setup for Real-World Implementation of Swarm Robotic Systems in Long-Term Scenarios

  • Farshad ArvinEmail author
  • Tomáš Krajník
  • Ali Emre Turgut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)

Abstract

Swarm robotics is a relatively new research field that employs multiple robots (tens, hundreds or even thousands) that collaborate on complex tasks. There are several issues which limit the real-world application of swarm robotic scenarios, e.g. autonomy time, communication methods, and cost of commercialised robots. We present a platform, which aims to overcome the aforementioned limitations while using off-the-shelf components and freely-available software. The platform combines (i) a versatile open-hardware micro-robot capable of local and global communication, (ii) commercially-available wireless charging modules which provide virtually unlimited robot operation time, (iii) open-source marker-based robot tracking system for automated experiment evaluation, (iv) and a LCD display or a light projector to simulate environmental cues and pheromone communication. To demonstrate the versatility of the system, we present several scenarios, where our system was used.

Keywords

Open-source Swarm robotics Artificial pheromone Perpetual robot swarm Tracking system 

References

  1. 1.
    Ahn, S.J., Rauh, W., Recknagel, M.: Circular coded landmark for optical 3D-measurement and robot vision. In: IROS, pp. 1128–1133 (1999)Google Scholar
  2. 2.
    Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robotic Syst. 92, 1–15 (2018)Google Scholar
  3. 3.
    Arvin, F., Turgut, A., Bazyari, F., Arikan, K., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adapt. Behav. 22, 189–206 (2014)Google Scholar
  4. 4.
    Arvin, F., Attar, A., Turgut, A.E., Yue, S.: Power-law distribution of long-term experimental data in swarm robotics. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9140, pp. 551–559. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20466-6_58Google Scholar
  5. 5.
    Arvin, F., Krajník, T., Turgut, A.E., Yue, S.: COS\(\Phi \): artificial pheromone system for robotic swarms research. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 407–412 (2015)Google Scholar
  6. 6.
    Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: an autonomous micro robot for swarm robotic applications. Int. J. Adv. Rob. Syst. 11(7), 113 (2014)Google Scholar
  7. 7.
    Arvin, F., Samsudin, K., Ramli, A.R.: Swarm robots long term autonomy using moveable charger. In: International Conference on Future Computer and Communication (2009)Google Scholar
  8. 8.
    Arvin, F., Samsudin, K., Ramli, A.R., Bekravi, M.: Imitation of honeybee aggregation with collective behavior of swarm robots. Int. J. Comput. Intell. Syst. 4(4), 739–748 (2011)Google Scholar
  9. 9.
    Arvin, F., Turgut, A.E., Krajník, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)Google Scholar
  10. 10.
    Arvin, F., Watson, S., Turgut, A.E., Espinosa, J., Krajník, T., Lennox, B.: Perpetual robot swarm: long-term autonomy of mobile robots using on-the-fly inductive charging. J. Intell. Rob. Syst. 92(3–4), 1–18 (2017)Google Scholar
  11. 11.
    Arvin, F., et al.: \(\Phi \)Clust: pheromone-based aggregation for robotic swarms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)Google Scholar
  12. 12.
    Bayindir, L., Şahin, E.: Modeling self-organized aggregation in swarm robotic systems. In: Swarm Intelligence Symposium, pp. 88–95. IEEE (2009)Google Scholar
  13. 13.
    Bonani, M., et al.: The marxbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: IROS (2010)Google Scholar
  14. 14.
    Bošnak, M., Matko, D., Blažič, S.: Quadrocopter hovering using position-estimation information from inertial sensors and a high-delay video system. J. Intell. Rob. Syst. 67(1), 43–60 (2012)Google Scholar
  15. 15.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)Google Scholar
  16. 16.
    Breitenmoser, A., Kneip, L., Siegwart, R.: A monocular vision-based system for 6D relative robot localization. In: IROS, pp. 79–85 (2011)Google Scholar
  17. 17.
    Carrillo, M., et al.: A bio-inspired approach for collaborative exploration with mobile battery recharging in swarm robotics. In: Korošec, P., Melab, N., Talbi, E.-G. (eds.) BIOMA 2018. LNCS, vol. 10835, pp. 75–87. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91641-5_7Google Scholar
  18. 18.
    Correll, N., Martinoli, A.: Modeling self-organized aggregation in a swarm of miniature robots. In: ICRA Workshop on Collective Behaviors inspired by Biological and Biochemical Systems (2007)Google Scholar
  19. 19.
    Deyle, T., Reynolds, M.: Surface based wireless power transmission and bidirectional communication for autonomous robot swarms. In: ICRA. IEEE (2008)Google Scholar
  20. 20.
    Fiala, M.: ARTag, An Improved Marker System Based on ARToolkit (2004)Google Scholar
  21. 21.
    Fiala, M.: Vision guided control of multiple robots. In: First Canadian Conference on Computer and Robot Vision, pp. 241–246 (2004)Google Scholar
  22. 22.
    Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: genetic evolution of a neural network driven robot. In: 3rd International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3 (1994)Google Scholar
  23. 23.
    Fossum, F., Montanier, J.M., Haddow, P.C.: Repellent pheromones for effective swarm robot search in unknown environments. In: IEEE Symposium on Swarm Intelligence (SIS), pp. 1–8 (2014)Google Scholar
  24. 24.
    Fu, Q., Hu, C., Peng, J., Yue, S.: Shaping the collision selectivity in a looming sensitive neuron model with parallel ON and OFF pathways and spike frequency adaptation. Neural Netw. 106, 127–143 (2018)Google Scholar
  25. 25.
    Fujisawa, R., Dobata, S., Sugawara, K., Matsuno, F.: Designing pheromone communication in swarm robotics: group foraging behavior mediated by chemical substance. Swarm Intell. 8(3), 227–246 (2014)Google Scholar
  26. 26.
    Garnier, S., Combe, M., Jost, C., Theraulaz, G.: Do ants need to estimate the geometrical properties of trail bifurcations to find an efficient route? A swarm robotics test bed. PLoS Comput. Biol. 9(3), e1002903 (2013)MathSciNetGoogle Scholar
  27. 27.
    Griparić, K., Haus, T., Miklić, D., Polić, M., Bogdan, S.: A robotic system for researching social integration in honeybees. PLoS ONE 12(8), e0181977 (2017)Google Scholar
  28. 28.
    Hamann, H.: Space-time continuous models of swarm robotics systems: supporting global-to-local programming. Ph.D. thesis, Department of Computer Science, University of Karlsruhe (2008)Google Scholar
  29. 29.
    Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74528-2Google Scholar
  30. 30.
    Hamann, H., Markarian, C., auf der Heide, F.M., Wahby, M.: Pick, pack, & survive: charging robots in a modern warehouse based on online connected dominating sets. In: 9th International Conference on Fun with Algorithms (FUN 2018), vol. 100, pp. 1–13 (2018)Google Scholar
  31. 31.
    Herianto, H., Sakakibara, T., Kurabayashi, D.: Artificial pheromone system using RFID for navigation of autonomous robots. J. Bionic Eng. 4(4), 245–253 (2007)Google Scholar
  32. 32.
    Holland, O., Melhuish, C.: An interactive method for controlling group size in multiple mobile robot systems. In: ICAR, pp. 201–206 (1997)Google Scholar
  33. 33.
    Hu, C., Arvin, F., Xiong, C., Yue, S.: A bio-inspired embedded vision system for autonomous micro-robots: the LGMD case. IEEE Trans. Cogn. Dev. Syst. 9(3), 241–254 (2017)Google Scholar
  34. 34.
    de Ipin̈a, D.L., Mendonça, P.R.S., Hopper, A.: TRIP: a low-cost vision-based location system for ubiquitous computing. Pers. Ubiquit. Comput. 6(3), 206–219 (2002)Google Scholar
  35. 35.
    Ismail, A.R., Desia, R., Zuhri, M.F.R.: The initial investigation of the design and energy sharing algorithm using two-ways communication mechanism for swarm robotic systems. In: Phon-Amnuaisuk, S., Au, T.W. (eds.) Computational Intelligence in Information Systems. AISC, vol. 331, pp. 61–71. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-13153-5_7Google Scholar
  36. 36.
    Karpelson, M., et al.: A wirelessly powered, biologically inspired ambulatory microrobot. In: ICRA, pp. 2384–2391. IEEE (2014)Google Scholar
  37. 37.
    Khaliq, A.A., Saffiotti, A.: Stigmergy at work: planning and navigation for a service robot on an RFID floor. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1085–1092 (2015)Google Scholar
  38. 38.
    Klingner, J., Kanakia, A., Farrow, N., Reishus, D., Correll, N.: A stick-slip omnidirectional drive-train for low-cost swarm robotics: mechanism, calibration, and control. In: IROS, pp. 846–851 (2014)Google Scholar
  39. 39.
    Krajník, T., et al.: A practical multirobot localization system. J. Intell. Rob. Syst. 76(3–4), 539–562 (2014)Google Scholar
  40. 40.
    Krajník, T., et al.: A practical multirobot localization system. J. Intell. Rob. Syst. 76(3–4), 539–562 (2014)Google Scholar
  41. 41.
    Krajnik, T., Nitsche, M., Faigl, J., Duckett, T., Mejail, M., Preucil, L.: External localization system for mobile robotics. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2013)Google Scholar
  42. 42.
    Krajník, T., Santos, J.M., Duckett, T.: Life-long spatio-temporal exploration of dynamic environments. In: 2015 European Conference on Mobile Robots (ECMR), pp. 1–8. IEEE (2015)Google Scholar
  43. 43.
    Krieger, M.J., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799), 992–995 (2000)Google Scholar
  44. 44.
    Kulich, M., Chudoba, J., Košnar, K., Krajník, T., Faigl, J., Přeučil, L.: Syrotek - distance teaching of mobile robotics. IEEE Trans. Educ. 56(1), 18–23 (2013)Google Scholar
  45. 45.
    Lightbody, P., Krajník, T., Hanheide, M.: An efficient visual fiducial localisation system. SIGAPP Appl. Comput. Rev. 17(3), 28–37 (2017).  https://doi.org/10.1145/3161534.3161537Google Scholar
  46. 46.
    Lightbody, P., Krajník, T., Hanheide, M.: A versatile high-performance visual fiducial marker detection system with scalable identity encoding. In: Proceedings of the Symposium on Applied Computing, SAC 2017, pp. 276–282. ACM, New York (2017).  https://doi.org/10.1145/3019612.3019709
  47. 47.
    Martinoli, A., Ijspeert, A., Mondada, F.: Understanding collective aggregation mechanisms: from probabilistic modelling to experiments with real robots. Rob. Auton. Syst. 29(1), 51–63 (1999)Google Scholar
  48. 48.
    Mayet, R., Roberz, J., Schmickl, T., Crailsheim, K.: Antbots: a feasible visual emulation of pheromone trails for swarm robots. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 84–94. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15461-4_8Google Scholar
  49. 49.
    McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: human-robot interface design for large swarms of autonomous mobile robots. In: AAAI Spring Symposium (2006)Google Scholar
  50. 50.
    Mintchev, S., Ranzani, R., Fabiani, F., Stefanini, C.: Towards docking for small scale underwater robots. Auton. Robots 38(3), 283–299 (2015)Google Scholar
  51. 51.
    Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: ICRA, pp. 3400–3407. IEEE, May 2011Google Scholar
  52. 52.
    Pedre, S., Krajník, T., Todorovich, E., Borensztejn, P.: Hardware/software co-design for real time embedded image processing: a case study. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 599–606. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33275-3_74Google Scholar
  53. 53.
    Phoenix: Phoenix 3D motion capture. http://www.ptiphoenix.com/. Accessed 18 Aug 2018
  54. 54.
    Purnamadjaja, A.H., Russell, R.A.: Bi-directional pheromone communication between robots. Robotica 28(01), 69–79 (2010)Google Scholar
  55. 55.
    Rekleitis, I., Meger, D., Dudek, G.: Simultaneous planning, localization, and mapping in a camera sensor network. Rob. Auton. Syst. 54(11), 921–932 (2006)zbMATHGoogle Scholar
  56. 56.
    Rezeck, P.A., Azpurua, H., Chaimowicz, L.: HeRo: an open platform for robotics research and education. In: Latin American Robotics Symposium (LARS) and Brazilian Symposium on Robotics (SBR), pp. 1–6 (2017)Google Scholar
  57. 57.
    Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image Vis. Comput. 76, 38–47 (2018)Google Scholar
  58. 58.
    Russell, R.A.: Ant trails-an example for robots to follow? In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 2698–2703 (1999)Google Scholar
  59. 59.
    Russell, R.A.: Air vortex ring communication between mobile robots. Rob. Auton. Syst. 59(2), 65–73 (2011)Google Scholar
  60. 60.
    Santos, J.M., Krajník, T., Fentanes, J.P., Duckett, T.: Lifelong information-driven exploration to complete and refine 4-D spatio-temporal maps. IEEE Rob. Autom. Lett. 1(2), 684–691 (2016)Google Scholar
  61. 61.
    Schmickl, T., Hamann, H., Worn, H., Crailsheim, K.: Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Rob. Auton. Syst. 57(9), 913–921 (2009)Google Scholar
  62. 62.
    Schmickl, T., et al.: Get in touch: cooperative decision making based on robot-to-robot collisions. Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)MathSciNetGoogle Scholar
  63. 63.
    Soysal, O., Şahin, E.: A macroscopic model for self-organized aggregation in swarm robotic systems. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SR 2006. LNCS, vol. 4433, pp. 27–42. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71541-2_3Google Scholar
  64. 64.
    Stump, E., Kumar, V., Grocholsky, B., Shiroma, P.M.: Control for localization of targets using range-only sensors. Int. J. Rob. Res. 28(6), 743–757 (2009)Google Scholar
  65. 65.
    Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots with virtual pheromone. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3074–3079 (2004)Google Scholar
  66. 66.
    Takaya, Y.U., Arita, T.: Situated and embodied evolution in collective evolutionary robotics. In: International Symposium on Artificial Life and Robotics (2003)Google Scholar
  67. 67.
    Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2), 97–120 (2008)Google Scholar
  68. 68.
    Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot robot. Swarm Intell. 12, 1–22 (2018)Google Scholar
  69. 69.
    Vaussard, F., Rétornaz, P., Roelofsen, S., Bonani, M., Rey, F., Mondada, F.: Towards long-term collective experiments. In: Lee, S., Cho, H., Yoon, K.J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 194, pp. 683–692. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-33932-5_64Google Scholar
  70. 70.
    Vicon: Vicon MX Systems. http://www.vicon.com/products/viconmx.html. Accessed 12 July 2013
  71. 71.
    Wagner, D., Schmalstieg, D.: ARToolKitPlus for pose tracking on mobile devices. In: 12th Computer Vision Winter Workshop (CVWW), pp. 139–146 (2007)Google Scholar
  72. 72.
    Walter, V., Saska, M., Franchi, A.: Fast mutual relative localization of UAVs using ultraviolet LED markers. In: 2018 International Conference on Unmanned Aircraft Systems (2018)Google Scholar
  73. 73.
    Watson, R.A., Ficiei, S., Pollack, J.B.: Embodied evolution: embodying an evolutionary algorithm in a population of robots. In: Congress on Evolutionary Computation (1999)Google Scholar
  74. 74.
    West, A., Arvin, F., H. Martin, S.W., Lennox, B.: ROS Integration for Miniature Mobile Robots. In: Towards Autonomous Robotic Systems (TAROS) (2018)Google Scholar
  75. 75.
    Winfield, A.F., Nembrini, J.: Emergent swarm morphology control of wireless networked mobile robots. In: Doursat, R., Sayama, H., Michel, O. (eds.) Morphogenetic Engineering, pp. 239–271. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33902-8_10Google Scholar
  76. 76.
    Yamamoto, Y., et al.: Optical sensing for robot perception and localization. In: IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 14–17 (2005)Google Scholar
  77. 77.
    Yang, S., Scherer, S., Zell, A.: An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle. J. Intell. Rob. Syst. 69(1–4), 499–515 (2013)Google Scholar
  78. 78.
    Zhang, Z., Xu, X., Li, B., Deng, B.: An energy-encrypted contactless charging system for swarm robots. In: Magnetics Conference (INTERMAG) (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringThe University of ManchesterManchesterUK
  2. 2.Artificial Intelligence Centre, Faculty of Electrical EngineeringCzech Technical UniversityPragueCzechia
  3. 3.Mechanical Engineering DepartmentMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations