Advertisement

ROS/Gazebo Based Simulation of Co-operative UAVs

  • Cinzia BernardeschiEmail author
  • Adriano Fagiolini
  • Maurizio Palmieri
  • Giulio Scrima
  • Fabio Sofia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)

Abstract

UAVs can be assigned different tasks such as e.g., rendez-vous and space coverage, which require processing and communication capabilities. This work extends the architecture ROS/Gazebo with the possibility of simulation of co-operative UAVs. We assume UAV with the underlying attitude controller based on the open-source Ardupilot software. The integration of the co-ordination algorithm in Gazebo is implemented with software modules extending Ardupilot with the capability of sending/receiving messages to/from drones, and executing the co-ordination protocol. As far as it concerns the simulation environment, we have extended the world in Gazebo to hold more than one drone and to open a specific communication port per drone. In the paper, results on the simulation of a representative co-ordination algorithm are shown and discussed, in a scenario where a small number of Iris Quadcopters are deployed.

Keywords

ROS/Gazebo Co-operative UAVs Simulation 

References

  1. 1.
    3DRobotics: Dronekit-python’s documentation (2016). http://python.dronekit.io/
  2. 2.
    Adams, S.M., Friedland, C.J.: A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management. In: 9th International Workshop on Remote Sensing for Disaster Response, p. 8 (2011)Google Scholar
  3. 3.
    ArduPilot-DevTeam: ArduPilot documentation (2016). http://ardupilot.org/ardupilot/
  4. 4.
    Bernardeschi, C., Domenici, A., Masci, P.: A PVS-simulink integrated environment for model-based analysis of cyber-physical systems. IEEE Trans. Softw. Eng. 44(6), 512–533 (2018)CrossRefGoogle Scholar
  5. 5.
    Chandler, P.R., et al.: Complexity in UAV cooperative control. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), vol. 3, pp. 1831–1836. IEEE (2002)Google Scholar
  6. 6.
    Dronecode-Project: MAVlink developer guide (2018). https://mavlink.io/en/
  7. 7.
    Ham, Y., Han, K.K., Lin, J.J., Golparvar-Fard, M.: Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): a review of related works. Vis. Eng. 4(1) (2016)Google Scholar
  8. 8.
    Koenig, N.P., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: IROS, vol. 4, pp. 2149–2154. Citeseer (2004)Google Scholar
  9. 9.
    Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical systems: the INTO-CPS project. In: 2016 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), pp. 1–6, April 2016Google Scholar
  10. 10.
    Lu, P., Geng, Q.: Real-time simulation system for UAV based on Matlab/Simulink. In: 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE), vol. 1, pp. 399–404. IEEE (2011)Google Scholar
  11. 11.
    Maza, I., Caballero, F., Capitán, J., Martínez-de Dios, J.R., Ollero, A.: Experimental results in multi-UAV coordination for disaster management and civil security applications. J. Intell. Robot. Syst. 61(1–4), 563–585 (2011)CrossRefGoogle Scholar
  12. 12.
    Meyer, Johannes, Sendobry, Alexander, Kohlbrecher, Stefan, Klingauf, Uwe, von Stryk, Oskar: Comprehensive Simulation of Quadrotor UAVs Using ROS and Gazebo. In: Noda, Itsuki, Ando, Noriaki, Brugali, Davide, Kuffner, James J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 400–411. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34327-8_36CrossRefGoogle Scholar
  13. 13.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  14. 14.
    Ollero, A., et al.: AWARE: platform for autonomous self-deploying and operation of wireless sensor-actuator networks cooperating with unmanned aerial vehicles. In: 2007 IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2007, pp. 1–6. IEEE (2007)Google Scholar
  15. 15.
  16. 16.
    OSRF: ROS Wiki: documentation (2018). http://wiki.ros.org/
  17. 17.
    PX4-DevTeam: Pixhawk series (2018). https://docs.px4.io/en/flight_controller/
  18. 18.
    Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan, vol. 3, p. 5 (2009)Google Scholar
  19. 19.
    Quintero, S.A., Papi, F., Klein, D.J., Chisci, L., Hespanha, J.P.: Optimal UAV coordination for target tracking using dynamic programming. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 4541–4546. IEEE (2010)Google Scholar
  20. 20.
    Rasmussen, S.J., Chandler, P.R.: MultiUAV: a multiple UAV simulation for investigation of cooperative control. In: 2002 Proceedings of the Winter Simulation Conference, vol. 1, pp. 869–877. IEEE (2002)Google Scholar
  21. 21.
    Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D.: UAV photogrammetry for mapping and 3D modeling-current status and future perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38(1), C22 (2011)Google Scholar
  22. 22.
    Robusto, C.C.: The cosine-haversine formula. Am. Math. Mon. 64(1), 38–40 (1957)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rysdyk, R.: Unmanned aerial vehicle path following for target observation in wind. J. Guid. Control Dyn. 29(5), 1092–1100 (2006)CrossRefGoogle Scholar
  24. 24.
    Semsch, E., Jakob, M., Pavlicek, D., Pechoucek, M.: Autonomous UAV surveillance in complex urban environments. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, vol. 02, pp. 82–85. IEEE Computer Society (2009)Google Scholar
  25. 25.
    Techy, L., Woolsey, C.A., Schmale, D.G.: Path planning for efficient UAV coordination in aerobiological sampling missions. In: 2008 47th IEEE Conference on Decision and Control, CDC 2008, pp. 2814–2819. IEEE (2008)Google Scholar
  26. 26.
    Tortonesi, M., Stefanelli, C., Benvegnu, E., Ford, K., Suri, N., Linderman, M.: Multiple-UAV coordination and communications in tactical edge networks. IEEE Commun. Mag. 50(10), 48–55 (2012)CrossRefGoogle Scholar
  27. 27.
    Wise, R., Rysdyk, R.: UAV coordination for autonomous target tracking. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, 6453 (2006)Google Scholar
  28. 28.
    Pyo, Y., Cho, H., Jung, L., Lim, D.: ROS Robot Programming (English). ROBOTIS, December 2017Google Scholar
  29. 29.
    Zhang, C., Kovacs, J.M.: The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13(6), 693–712 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cinzia Bernardeschi
    • 1
    Email author
  • Adriano Fagiolini
    • 2
  • Maurizio Palmieri
    • 3
  • Giulio Scrima
    • 1
  • Fabio Sofia
    • 1
  1. 1.Department of Information EngineeringUniversity of PisaPisaItaly
  2. 2.Department of Energy, Information Engineering and Mathematical ModelsUniversity of PalermoPalermoItaly
  3. 3.Department of Information EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations