Advertisement

Localization Fusion for Aerial Vehicles in Partially GNSS Denied Environments

  • Jan BayerEmail author
  • Jan Faigl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)

Abstract

In this paper, we report on early results of the experimental deployment of localization techniques for a multi-rotor Micro Aerial Vehicle (MAV). In particular, we focus on deployment scenarios where the Global Navigation Satellite System (GNSS) does not provide a reliable signal, and thus it is not desirable to rely solely on the GNSS. Therefore, we consider recent advancements in the visual localization, and we employ an onboard RGB-D camera to develop a robust and reliable solution for the MAV localization in partially GNSS denied operational environments. We consider a localization method based on Kalman filter for data fusion of the vision-based localization with the signal from the GNSS. Based on the reported experimental results, the proposed solution supports the localization of the MAV for the temporarily unavailable GNSS, but also improves the position estimation provided by the incremental vision-based localization system while it can run using onboard computational resources of the small vehicle.

Notes

Acknowledgement

This work has been supported by the Technology Agency of the Czech Republic (TAČR) under research Project No. TH03010362.

References

  1. 1.
    Báča, T., Heřt, D., Loianno, G., Saska, M., Kumar, V.: Model predictive trajectory tracking and collision avoidance for reliable outdoor deployment of unmanned aerial vehicles. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 6753–6760 (2018)Google Scholar
  2. 2.
    Collective of authors: Vicon Motion Systems Inc. https://www.vicon.com. Accessed 05 Aug 2018
  3. 3.
    Collective of authors: Intel RealSense Depth Camera D435. https://click.intel.com/intelr-realsensetm-depth-camera-d435.html. Accessed 04 Aug 2018
  4. 4.
    Cui, J.Q., Lai, S., Dong, X., Liu, P., Chen, B.M., Lee, T.H.: Autonomous navigation of UAV in forest. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 726–733 (2014)Google Scholar
  5. 5.
    Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1691–1696 (2012)Google Scholar
  6. 6.
    Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)CrossRefGoogle Scholar
  7. 7.
    Fischer, T., Pire, T., Čížek, P., De Cristóforis, P., Faigl, J.: Stereo vision-based localization for hexapod walking robots operating in rough terrains. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2492–2497 (2016)Google Scholar
  8. 8.
    Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22 (2014)Google Scholar
  9. 9.
    Gauglitz, S., Sweeney, C., Ventura, J., Turk, M., Höllerer, T.: Live tracking and mapping from both general and rotation-only camera motion. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 13–22 (2012)Google Scholar
  10. 10.
    Khoury, H.M., Kamat, V.R.: Evaluation of position tracking technologies for user localization in indoor construction environments. Autom. Constr. 18(4), 649–656 (2009)CrossRefGoogle Scholar
  11. 11.
    Lu, Y., Xue, Z., Xia, G.S., Zhang, L.: A survey on vision-based UAV navigation. Geo-Spatial Inf. Sci. 21(1), 21–32 (2018).  https://doi.org/10.1080/10095020.2017.1420509CrossRefGoogle Scholar
  12. 12.
    Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3061–3070 (2015)Google Scholar
  13. 13.
    Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)CrossRefGoogle Scholar
  14. 14.
    Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRefGoogle Scholar
  15. 15.
    Nowicki, M., Belter, D., Kostusiak, A., Čížek, P., Faigl, J., Skrzypczynski, P.: An experimental study on feature-based SLAM for multi-legged robots with RGB-D sensors. Ind. Robot: Int. J. 44(4), 320–328 (2017)CrossRefGoogle Scholar
  16. 16.
    Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3400–3407 (2011)Google Scholar
  17. 17.
    Opromolla, R., Fasano, G., Rufino, G., Grassi, M., Savvaris, A.: LIDAR-inertial integration for UAV localization and mapping in complex environments. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 444–457 (2016)Google Scholar
  18. 18.
    Piasco, N., Sidibé, D., Demonceaux, C., Gouet-Brunet, V.: A survey on visual-based localization: on the benefit of heterogeneous data. Pattern Recognit. 74, 90–109 (2018)CrossRefGoogle Scholar
  19. 19.
    Pire, T., Fischer, T., Civera, J., De Cristóforis, P., Jacobo Berlles, J.: Stereo parallel tracking and mapping for robot localization. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1373–1378 (2015)Google Scholar
  20. 20.
    Quigley, M., et al.: ROS: an open-source robot operating system. In: IEEE International Conference on Robotics and Automation (ICRA): Workshop on Open Source Software (2009)Google Scholar
  21. 21.
    Stelzer, A., Hirschmüller, H., Görner, M.: Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. Int. J. Robot. Res. 31(4), 381–402 (2012)CrossRefGoogle Scholar
  22. 22.
    Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 573–580 (2012)Google Scholar
  23. 23.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)Google Scholar
  24. 24.
    Toloei, A., Niazi, S.: State estimation for target tracking problems with nonlinear Kalman filter algorithms. Int. J. Comput. Appl. 98(17), 30–36 (2014)Google Scholar
  25. 25.
    Usenko, V., Engel, J., Stückler, J., Cremers, D.: Direct visual-inertial odometry with stereo cameras. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1885–1892 (2016)Google Scholar
  26. 26.
    Wang, C., Wang, T., Liang, J., Chen, Y., Zhang, Y., Wang, C.: Monocular visual slam for small UAVS in GPS-denied environments. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 896–901 (2012).  https://doi.org/10.1109/ROBIO.2012.6491082
  27. 27.
    Wang, F., Cui, J.Q., Chen, B.M., Lee, T.H.: A comprehensive UAV indoor navigation system based on vision optical flow and laser FastSLAM. Acta Autom. Sinica 39(11), 1889–1899 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations